aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--GameState.py144
-rw-r--r--MCTS.py150
2 files changed, 0 insertions, 294 deletions
diff --git a/GameState.py b/GameState.py
deleted file mode 100644
index eed8f36..0000000
--- a/GameState.py
+++ /dev/null
@@ -1,144 +0,0 @@
-from random import choice
-
-# Based on https://github.com/DieterBuys/mcts-player/
-
-class GameState(object):
-
- def __init__(self):
- self.next_turn_player = 1
- self.player = None
-
- @property
- def game_result(self):
- return None
-
- def get_moves(self):
- return set()
-
- def get_random_move(self):
- moves = self.get_moves()
- return choice(tuple(moves)) if moves != set() else None
-
- def play_move(self, move):
- pass
-
-
-class DotsAndBoxesState(GameState):
- def __init__(self, nb_rows, nb_cols, player):
- super(DotsAndBoxesState, self).__init__()
-
- self.nb_rows = nb_rows
- self.nb_cols = nb_cols
- rows = []
- for ri in range(nb_rows + 1):
- columns = []
- for ci in range(nb_cols + 1):
- columns.append({"v": 0, "h": 0})
- rows.append(columns)
- self.board = rows
-
- self.score = {1: 0, 2: 0}
- self.player = player
- print("Player: ", player)
-
- @property
- def game_result(self):
- def game_decided(nb_cols, nb_rows, scoreP, scoreO):
- # the game is decided if the winner is already known even before the game is ended
- # you're guaranteed to win the game if you have more than halve of the total points that can be earned
- total_points = nb_rows * nb_cols
- if scoreP > total_points // 2 or scoreO > total_points // 2:
- return True
- else:
- return False
-
- # check if the board is full, then decide based on score
- free_lines = self.get_moves()
- player = self.player
- opponent = self.player % 2 + 1
-
- if not game_decided(self.nb_cols, self.nb_rows, self.score[player], self.score[opponent]) and len(free_lines) > 0:
- return None
- elif self.score[player] > self.score[opponent]:
- return 1
- elif self.score[player] < self.score[opponent]:
- return 0
- else:
- return 0.5
-
- def get_moves(self):
- free_lines = []
- for ri in range(len(self.board)):
- row = self.board[ri]
- for ci in range(len(row)):
- cell = row[ci]
- if ri < (len(self.board) - 1) and cell["v"] == 0:
- free_lines.append((ri, ci, "v"))
- if ci < (len(row) - 1) and cell["h"] == 0:
- free_lines.append((ri, ci, "h"))
- return set(free_lines)
-
- def play_move(self, move):
- r, c, o = move
- assert move in self.get_moves()
-
- # check if this move makes a box
- makes_box = False
- if o == "h":
- if r - 1 >= 0:
- # check above
- if self.board[r-1][c]["h"] != 0 and self.board[r-1][c]["v"] != 0 and self.board[r-1][c+1]["v"] != 0:
- makes_box = True
- self.score[self.next_turn_player] += 1
- if r + 1 <= self.nb_rows:
- # check below
- if self.board[r+1][c]["h"] != 0 and self.board[r][c]["v"] != 0 and self.board[r][c+1]["v"] != 0:
- makes_box = True
- self.score[self.next_turn_player] += 1
-
- elif o == "v":
- if c - 1 >= 0:
- # check left
- if self.board[r][c-1]["v"] != 0 and self.board[r][c-1]["h"] != 0 and self.board[r+1][c-1]["h"] != 0:
- makes_box = True
- self.score[self.next_turn_player] += 1
-
- if c + 1 <= self.nb_cols:
- # check right
- if self.board[r][c+1]["v"] != 0 and self.board[r][c]["h"] != 0 and self.board[r+1][c]["h"] != 0:
- makes_box = True
- self.score[self.next_turn_player] += 1
-
-
- # register move
- self.board[r][c][o] = self.next_turn_player
-
- if not makes_box:
- # switch turns
- self.next_turn_player = self.next_turn_player % 2 + 1
-
- def __repr__(self):
- str = ""
- for r in range(self.nb_rows + 1):
- for o in ["h", "v"]:
- for c in range(self.nb_cols + 1):
- if o == "h":
- str += "."
- if c != self.nb_cols:
- if self.board[r][c][o] == 0:
- str += " "
- else:
- str += "__"
- else:
- str += "\n"
- elif o == "v":
- if r != self.nb_rows:
- if self.board[r][c][o] == 0:
- str += " "
- else:
- str += "|"
- if c != self.nb_cols:
- str += " "
- else:
- str += "\n"
- return str
diff --git a/MCTS.py b/MCTS.py
deleted file mode 100644
index 7e81ac6..0000000
--- a/MCTS.py
+++ /dev/null
@@ -1,150 +0,0 @@
-import math
-from copy import deepcopy
-from time import clock
-from random import choice
-
-from GameState import GameState
-
-# Based on https://github.com/DieterBuys/mcts-player/
-
-class GameController(object):
- def get_next_move(self, state):
- # when you get a new move, it is assumed that the game is not ended yet
- assert state.get_moves()
-
-class MCTSNode(object):
- """Monte Carlo Tree Node.
- Each node encapsulates a particular game state, the moves that
- are possible from that state and the strategic information accumulated
- by the tree search as it progressively samples the game space.
- """
-
- def __init__(self, state, parent=None, move=None):
- self.parent = parent
- self.move = move
- self.state = state
-
- self.plays = 0
- self.score = 0
-
- self.pending_moves = state.get_moves()
- self.children = []
-
- def select_child_ucb(self):
- # Note that each node's plays count is equal
- # to the sum of its children's plays
- def ucb(child):
- win_ratio = child.score / child.plays \
- + math.sqrt(2 * math.log(self.plays) / child.plays)
- return win_ratio
-
- return max(self.children, key=ucb)
-
- def expand_move(self, move):
- self.pending_moves.remove(move) # raises KeyError
-
- child_state = deepcopy(self.state)
- child_state.play_move(move)
-
- child = MCTSNode(state=child_state, parent=self, move=move)
- self.children.append(child)
- return child
-
- def get_score(self, result):
- # return result
- if result == 0.5:
- return result
-
- if self.state.player == 2:
- if self.state.next_turn_player == result:
- return 0.0
- else:
- return 1.0
- else:
- if self.state.next_turn_player == result:
- return 1.0
- else:
- return 0.0
-
- if self.state.next_turn_player == result:
- return 0.0
- else:
- return 1.0
-
- def __repr__(self):
- s = 'ROOT\n' if self.parent is None else ''
-
- children_moves = [c.move for c in self.children]
-
- s += """Score ratio: {score} / {plays}
-Pending moves: {pending_moves}
-Children's moves: {children_moves}
-State:
-{state}\n""".format(children_moves=children_moves, **self.__dict__)
-
- return s
-
-
-class MCTSGameController(GameController):
- """Game controller that uses MCTS to determine the next move.
- This is the class which implements the Monte Carlo Tree Search algorithm.
- It builds a game tree of MCTSNodes and samples the game space until a set
- time has elapsed.
- """
-
- def select(self):
- node = self.root_node
-
- # Descend until we find a node that has pending moves, or is terminal
- while node.pending_moves == set() and node.children != []:
- node = node.select_child_ucb()
-
- return node
-
- def expand(self, node):
- assert node.pending_moves != set()
-
- move = choice(tuple(node.pending_moves))
- return node.expand_move(move)
-
- def simulate(self, state, max_iterations=1000):
- state = deepcopy(state)
-
- move = state.get_random_move()
- while move is not None:
- state.play_move(move)
- move = state.get_random_move()
-
- max_iterations -= 1
- if max_iterations <= 0:
- return 0.5 # raise exception? (game too deep to simulate)
-
- return state.game_result
-
- def update(self, node, result):
- while node is not None:
- node.plays += 1
- node.score += node.get_score(result)
- node = node.parent
-
- def get_next_move(self, state, time_allowed=1.0):
- super(MCTSGameController, self).get_next_move(state)
-
- # Create new tree (TODO: Preserve some state for better performance?)
- self.root_node = MCTSNode(state)
- iterations = 0
-
- start_time = clock()
- while clock() < start_time + time_allowed:
- node = self.select()
-
- if node.pending_moves != set():
- node = self.expand(node)
-
- result = self.simulate(node.state)
- self.update(node, result)
-
- iterations += 1
-
- # Return most visited node's move
- return max(self.root_node.children, key=lambda n: n.plays).move