def alpha_beta(node, alpha, beta): # Based on https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning#Pseudocode # node needs to support three operations: isTerminal(), value(), getChildren(), maximizingPlayer() if node.isTerminal(): return node.value() if node.maximizingPlayer(): v = float("-inf") for child in node.getChildren(): v = max(v, alpha_beta(child, alpha, beta)) alpha = max(alpha, v) if beta <= alpha: break else: v = float("inf") for child in node.getChildren(): v = min(v, alpha_beta(child, alpha, beta)) beta = min(beta, v) if beta <= alpha: break return v # A class for defining algorithms used (minimax and alpha-beta pruning) class AlphaBeta: def miniMax(State, Ply_num): # Function for the minimax algorithm for i in range(State.Current.dimY): for j in range(State.Current.dimX): if State.Current.Mat[i][j] == ' ' and (j, i) not in State.children: State.Make(j, i, True) if Ply_num < 2: return (i, j) Minimum_Score = 1000 i = 0 j = 0 for k, z in State.children.items(): Result = Algo.Maximum(z, Ply_num - 1, Minimum_Score) if Minimum_Score > Result: Minimum_Score = Result i = k[0] j = k[1] return (i, j) # Alpha-beta pruning function for taking care of Alpha values def Maximum(State, Ply_num, Alpha): if Ply_num == 0: return State.CurrentScore for i in range(State.Current.dimY): for j in range(State.Current.dimX): if State.Current.Mat[i][j] == ' ' and (j, i) not in State.children: State.Make(j, i, False) Maximum_Score = -1000 i = 0 j = 0 for k, z in State.children.items(): Result = Algo.Minimum(z, Ply_num - 1, Maximum_Score) if Maximum_Score < Result: Maximum_Score = Result if Result > Alpha: return Result return Maximum_Score def Minimum(State, Ply_num, Beta): # Alpha-beta pruning function for taking care of Beta values if Ply_num == 0: return State.CurrentScore for i in range(State.Current.dimY): for j in range(State.Current.dimX): if State.Current.Mat[i][j] == ' ' and (j, i) not in State.children: State.Make(j, i, True) Minimum_Score = 1000 i = 0 j = 0 for k, z in State.children.items(): Result = Algo.Maximum(z, Ply_num - 1, Minimum_Score) if Minimum_Score > Result: Minimum_Score = Result if Result < Beta: return Result return Minimum_Score