diff options
author | Matt Strapp <matt@mattstrapp.net> | 2021-09-20 18:15:14 -0500 |
---|---|---|
committer | Matt Strapp <matt@mattstrapp.net> | 2021-09-20 18:15:14 -0500 |
commit | 342403a02f8063903d0f38327430721d4d0ae331 (patch) | |
tree | 29d020a27bc16939c568dd4b29166566d1c0e658 /dev/MinGfx/src/quaternion.cc | |
parent | Fix parenthesis (diff) | |
download | csci4611-submission-p1.0.tar csci4611-submission-p1.0.tar.gz csci4611-submission-p1.0.tar.bz2 csci4611-submission-p1.0.tar.lz csci4611-submission-p1.0.tar.xz csci4611-submission-p1.0.tar.zst csci4611-submission-p1.0.zip |
do ass1submission-p1.0
Diffstat (limited to '')
-rw-r--r-- | dev/MinGfx/src/quaternion.cc | 520 |
1 files changed, 260 insertions, 260 deletions
diff --git a/dev/MinGfx/src/quaternion.cc b/dev/MinGfx/src/quaternion.cc index 4f2998f..7551c62 100644 --- a/dev/MinGfx/src/quaternion.cc +++ b/dev/MinGfx/src/quaternion.cc @@ -1,260 +1,260 @@ -/* -Copyright (c) 2017,2018 Regents of the University of Minnesota. -All Rights Reserved. -See corresponding header file for details. -*/ - -#define _USE_MATH_DEFINES -#include "quaternion.h" - -#include "gfxmath.h" - -namespace mingfx { - - -Quaternion::Quaternion() { - q[0] = 0.0; - q[1] = 0.0; - q[2] = 0.0; - q[3] = 1.0; -} - -Quaternion::Quaternion(float qx, float qy, float qz, float qw) { - q[0] = qx; - q[1] = qy; - q[2] = qz; - q[3] = qw; -} - -Quaternion::Quaternion(float *ptr) { - q[0] = ptr[0]; - q[1] = ptr[1]; - q[2] = ptr[2]; - q[3] = ptr[3]; -} - -Quaternion::Quaternion(const Quaternion& other) { - q[0] = other[0]; - q[1] = other[1]; - q[2] = other[2]; - q[3] = other[3]; -} - -Quaternion::~Quaternion() { -} - -bool Quaternion::operator==(const Quaternion& other) const { - return (fabs(other[0] - q[0]) < MINGFX_MATH_EPSILON && - fabs(other[1] - q[1]) < MINGFX_MATH_EPSILON && - fabs(other[2] - q[2]) < MINGFX_MATH_EPSILON && - fabs(other[3] - q[3]) < MINGFX_MATH_EPSILON); -} - -bool Quaternion::operator!=(const Quaternion& other) const { - return (fabs(other[0] - q[0]) >= MINGFX_MATH_EPSILON || - fabs(other[1] - q[1]) >= MINGFX_MATH_EPSILON || - fabs(other[2] - q[2]) >= MINGFX_MATH_EPSILON || - fabs(other[3] - q[3]) >= MINGFX_MATH_EPSILON); -} - -Quaternion& Quaternion::operator=(const Quaternion& other) { - q[0] = other[0]; - q[1] = other[1]; - q[2] = other[2]; - q[3] = other[3]; - return *this; -} - -float Quaternion::operator[](const int i) const { - if ((i>=0) && (i<=3)) { - return q[i]; - } - else { - // this is an error! - return 0.0; - } -} - -float& Quaternion::operator[](const int i) { - return q[i]; -} - - -const float * Quaternion::value_ptr() const { - return q; -} - -Quaternion Quaternion::Slerp(const Quaternion &other, float alpha) const { - // https://en.wikipedia.org/wiki/Slerp - - Quaternion v0 = *this; - Quaternion v1 = other; - - // Only unit quaternions are valid rotations. - // Normalize to avoid undefined behavior. - v0.Normalize(); - v1.Normalize(); - - // Compute the cosine of the angle between the two vectors. - float dot = v0.Dot(v1); - - // If the dot product is negative, the quaternions - // have opposite handed-ness and slerp won't take - // the shorter path. Fix by reversing one quaternion. - if (dot < 0.0f) { - v1 = -v1; - dot = -dot; - } - - const double DOT_THRESHOLD = 0.9995; - if (dot > DOT_THRESHOLD) { - // If the inputs are too close for comfort, linearly interpolate - // and normalize the result. - - Quaternion result = v0 + alpha*(v1 - v0); - result.Normalize(); - return result; - } - - GfxMath::Clamp(dot, -1, 1); // Robustness: Stay within domain of acos() - float theta_0 = acos(dot); // theta_0 = angle between input vectors - float theta = theta_0 * alpha; // theta = angle between v0 and result - - float s0 = cos(theta) - dot * sin(theta) / sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0) - float s1 = sin(theta) / sin(theta_0); - - return (s0 * v0) + (s1 * v1); -} - -Quaternion Quaternion::Slerp(const Quaternion &a, const Quaternion &b, float alpha) { - return a.Slerp(b, alpha); -} - - -std::ostream & operator<< ( std::ostream &os, const Quaternion &q) { - return os << "<" << q[0] << ", " << q[1] << ", " << q[2] << ", " << q[3] << ")"; -} - -std::istream & operator>> ( std::istream &is, Quaternion &q) { - // format: <qx, qy, qz, qw> - char dummy; - return is >> dummy >> q[0] >> dummy >> q[1] >> dummy >> q[2] >> dummy >> q[3] >> dummy; -} - - -float Quaternion::Dot(const Quaternion& other) const { - return q[0]*other[0] + q[1]*other[1] + q[2]*other[2] + q[3]*other[3]; - -} - -float Quaternion::Length() const { - return sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); -} - -void Quaternion::Normalize() { - float sizeSq = + q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; - if (sizeSq < MINGFX_MATH_EPSILON) { - return; // do nothing to zero quats - } - float scaleFactor = (float)1.0/(float)sqrt(sizeSq); - q[0] *= scaleFactor; - q[1] *= scaleFactor; - q[2] *= scaleFactor; - q[3] *= scaleFactor; -} - -Quaternion Quaternion::ToUnit() const { - Quaternion qtmp(*this); - qtmp.Normalize(); - return qtmp; -} - -/// Returns the conjugate of the quaternion. -Quaternion Quaternion::Conjugate() const { - return Quaternion(-q[0], -q[1], -q[2], q[3]); -} - - -Quaternion Quaternion::FromAxisAngle(const Vector3 &axis, float angle) { - // [qx, qy, qz, qw] = [sin(a/2) * vx, sin(a/2)* vy, sin(a/2) * vz, cos(a/2)] - float x = sin(angle/2.0f) * axis[0]; - float y = sin(angle/2.0f) * axis[1]; - float z = sin(angle/2.0f) * axis[2]; - float w = cos(angle/2.0f); - return Quaternion(x,y,z,w); -} - - -Quaternion Quaternion::FromEulerAnglesZYX(const Vector3 &angles) { - Quaternion rot_x = Quaternion::FromAxisAngle(Vector3::UnitX(), angles[0]); - Quaternion rot_y = Quaternion::FromAxisAngle(Vector3::UnitY(), angles[1]); - Quaternion rot_z = Quaternion::FromAxisAngle(Vector3::UnitZ(), angles[2]); - return rot_z * rot_y * rot_x; -} - -Vector3 Quaternion::ToEulerAnglesZYX() const { - // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles - - Vector3 angles; - - // roll (x-axis rotation) - float sinr = +2.0f * (w() * x() + y() * z()); - float cosr = +1.0f - 2.0f * (x() * x() + y() * y()); - angles[0] = std::atan2(sinr, cosr); - - // pitch (y-axis rotation) - float sinp = +2.0f * (w() * y() - z() * x()); - if (std::fabs(sinp) >= 1.f) - angles[1] = std::copysign(GfxMath::HALF_PI, sinp); // use 90 degrees if out of range - else - angles[1] = std::asin(sinp); - - // yaw (z-axis rotation) - float siny = +2.0f * (w() * z() + x() * y()); - float cosy = +1.0f - 2.0f * (y() * y() + z() * z()); - angles[2] = std::atan2(siny, cosy); - - return angles; -} - - -Quaternion operator*(const Quaternion& q1, const Quaternion& q2) { - float real1 = q1[3]; - Vector3 imag1 = Vector3(q1[0], q1[1], q1[2]); - - float real2 = q2[3]; - Vector3 imag2 = Vector3(q2[0], q2[1], q2[2]); - - float real = real1*real2 - imag1.Dot(imag2); - Vector3 imag = real1*imag2 + real2*imag1 + imag1.Cross(imag2); - - return Quaternion(imag[0], imag[1], imag[2], real); -} - - -Quaternion operator/(const Quaternion& q, const float s) { - const float invS = 1.0f / s; - return Quaternion(q[0]*invS, q[1]*invS, q[2]*invS, q[3]*invS); -} - -Quaternion operator*(const float s, const Quaternion& q) { - return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s); -} - -Quaternion operator*(const Quaternion& q, const float s) { - return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s); -} - -Quaternion operator-(const Quaternion& q) { - return Quaternion(-q[0], -q[1], -q[2], -q[3]); -} - -Quaternion operator+(const Quaternion& q1, const Quaternion& q2) { - return Quaternion(q1[0] + q2[0], q1[1] + q2[1], q1[2] + q2[2], q1[3] + q2[3]); -} - -Quaternion operator-(const Quaternion& q1, const Quaternion& q2) { - return Quaternion(q1[0] - q2[0], q1[1] - q2[1], q1[2] - q2[2], q1[3] - q2[3]); -} - -} // end namespace +/*
+Copyright (c) 2017,2018 Regents of the University of Minnesota.
+All Rights Reserved.
+See corresponding header file for details.
+*/
+
+#define _USE_MATH_DEFINES
+#include "quaternion.h"
+
+#include "gfxmath.h"
+
+namespace mingfx {
+
+
+Quaternion::Quaternion() {
+ q[0] = 0.0;
+ q[1] = 0.0;
+ q[2] = 0.0;
+ q[3] = 1.0;
+}
+
+Quaternion::Quaternion(float qx, float qy, float qz, float qw) {
+ q[0] = qx;
+ q[1] = qy;
+ q[2] = qz;
+ q[3] = qw;
+}
+
+Quaternion::Quaternion(float *ptr) {
+ q[0] = ptr[0];
+ q[1] = ptr[1];
+ q[2] = ptr[2];
+ q[3] = ptr[3];
+}
+
+Quaternion::Quaternion(const Quaternion& other) {
+ q[0] = other[0];
+ q[1] = other[1];
+ q[2] = other[2];
+ q[3] = other[3];
+}
+
+Quaternion::~Quaternion() {
+}
+
+bool Quaternion::operator==(const Quaternion& other) const {
+ return (fabs(other[0] - q[0]) < MINGFX_MATH_EPSILON &&
+ fabs(other[1] - q[1]) < MINGFX_MATH_EPSILON &&
+ fabs(other[2] - q[2]) < MINGFX_MATH_EPSILON &&
+ fabs(other[3] - q[3]) < MINGFX_MATH_EPSILON);
+}
+
+bool Quaternion::operator!=(const Quaternion& other) const {
+ return (fabs(other[0] - q[0]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[1] - q[1]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[2] - q[2]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[3] - q[3]) >= MINGFX_MATH_EPSILON);
+}
+
+Quaternion& Quaternion::operator=(const Quaternion& other) {
+ q[0] = other[0];
+ q[1] = other[1];
+ q[2] = other[2];
+ q[3] = other[3];
+ return *this;
+}
+
+float Quaternion::operator[](const int i) const {
+ if ((i>=0) && (i<=3)) {
+ return q[i];
+ }
+ else {
+ // this is an error!
+ return 0.0;
+ }
+}
+
+float& Quaternion::operator[](const int i) {
+ return q[i];
+}
+
+
+const float * Quaternion::value_ptr() const {
+ return q;
+}
+
+Quaternion Quaternion::Slerp(const Quaternion &other, float alpha) const {
+ // https://en.wikipedia.org/wiki/Slerp
+
+ Quaternion v0 = *this;
+ Quaternion v1 = other;
+
+ // Only unit quaternions are valid rotations.
+ // Normalize to avoid undefined behavior.
+ v0.Normalize();
+ v1.Normalize();
+
+ // Compute the cosine of the angle between the two vectors.
+ float dot = v0.Dot(v1);
+
+ // If the dot product is negative, the quaternions
+ // have opposite handed-ness and slerp won't take
+ // the shorter path. Fix by reversing one quaternion.
+ if (dot < 0.0f) {
+ v1 = -v1;
+ dot = -dot;
+ }
+
+ const double DOT_THRESHOLD = 0.9995;
+ if (dot > DOT_THRESHOLD) {
+ // If the inputs are too close for comfort, linearly interpolate
+ // and normalize the result.
+
+ Quaternion result = v0 + alpha*(v1 - v0);
+ result.Normalize();
+ return result;
+ }
+
+ GfxMath::Clamp(dot, -1, 1); // Robustness: Stay within domain of acos()
+ float theta_0 = acos(dot); // theta_0 = angle between input vectors
+ float theta = theta_0 * alpha; // theta = angle between v0 and result
+
+ float s0 = cos(theta) - dot * sin(theta) / sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0)
+ float s1 = sin(theta) / sin(theta_0);
+
+ return (s0 * v0) + (s1 * v1);
+}
+
+Quaternion Quaternion::Slerp(const Quaternion &a, const Quaternion &b, float alpha) {
+ return a.Slerp(b, alpha);
+}
+
+
+std::ostream & operator<< ( std::ostream &os, const Quaternion &q) {
+ return os << "<" << q[0] << ", " << q[1] << ", " << q[2] << ", " << q[3] << ")";
+}
+
+std::istream & operator>> ( std::istream &is, Quaternion &q) {
+ // format: <qx, qy, qz, qw>
+ char dummy;
+ return is >> dummy >> q[0] >> dummy >> q[1] >> dummy >> q[2] >> dummy >> q[3] >> dummy;
+}
+
+
+float Quaternion::Dot(const Quaternion& other) const {
+ return q[0]*other[0] + q[1]*other[1] + q[2]*other[2] + q[3]*other[3];
+
+}
+
+float Quaternion::Length() const {
+ return sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
+}
+
+void Quaternion::Normalize() {
+ float sizeSq = + q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
+ if (sizeSq < MINGFX_MATH_EPSILON) {
+ return; // do nothing to zero quats
+ }
+ float scaleFactor = (float)1.0/(float)sqrt(sizeSq);
+ q[0] *= scaleFactor;
+ q[1] *= scaleFactor;
+ q[2] *= scaleFactor;
+ q[3] *= scaleFactor;
+}
+
+Quaternion Quaternion::ToUnit() const {
+ Quaternion qtmp(*this);
+ qtmp.Normalize();
+ return qtmp;
+}
+
+/// Returns the conjugate of the quaternion.
+Quaternion Quaternion::Conjugate() const {
+ return Quaternion(-q[0], -q[1], -q[2], q[3]);
+}
+
+
+Quaternion Quaternion::FromAxisAngle(const Vector3 &axis, float angle) {
+ // [qx, qy, qz, qw] = [sin(a/2) * vx, sin(a/2)* vy, sin(a/2) * vz, cos(a/2)]
+ float x = sin(angle/2.0f) * axis[0];
+ float y = sin(angle/2.0f) * axis[1];
+ float z = sin(angle/2.0f) * axis[2];
+ float w = cos(angle/2.0f);
+ return Quaternion(x,y,z,w);
+}
+
+
+Quaternion Quaternion::FromEulerAnglesZYX(const Vector3 &angles) {
+ Quaternion rot_x = Quaternion::FromAxisAngle(Vector3::UnitX(), angles[0]);
+ Quaternion rot_y = Quaternion::FromAxisAngle(Vector3::UnitY(), angles[1]);
+ Quaternion rot_z = Quaternion::FromAxisAngle(Vector3::UnitZ(), angles[2]);
+ return rot_z * rot_y * rot_x;
+}
+
+Vector3 Quaternion::ToEulerAnglesZYX() const {
+ // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
+
+ Vector3 angles;
+
+ // roll (x-axis rotation)
+ float sinr = +2.0f * (w() * x() + y() * z());
+ float cosr = +1.0f - 2.0f * (x() * x() + y() * y());
+ angles[0] = std::atan2(sinr, cosr);
+
+ // pitch (y-axis rotation)
+ float sinp = +2.0f * (w() * y() - z() * x());
+ if (std::fabs(sinp) >= 1.f)
+ angles[1] = std::copysign(GfxMath::HALF_PI, sinp); // use 90 degrees if out of range
+ else
+ angles[1] = std::asin(sinp);
+
+ // yaw (z-axis rotation)
+ float siny = +2.0f * (w() * z() + x() * y());
+ float cosy = +1.0f - 2.0f * (y() * y() + z() * z());
+ angles[2] = std::atan2(siny, cosy);
+
+ return angles;
+}
+
+
+Quaternion operator*(const Quaternion& q1, const Quaternion& q2) {
+ float real1 = q1[3];
+ Vector3 imag1 = Vector3(q1[0], q1[1], q1[2]);
+
+ float real2 = q2[3];
+ Vector3 imag2 = Vector3(q2[0], q2[1], q2[2]);
+
+ float real = real1*real2 - imag1.Dot(imag2);
+ Vector3 imag = real1*imag2 + real2*imag1 + imag1.Cross(imag2);
+
+ return Quaternion(imag[0], imag[1], imag[2], real);
+}
+
+
+Quaternion operator/(const Quaternion& q, const float s) {
+ const float invS = 1.0f / s;
+ return Quaternion(q[0]*invS, q[1]*invS, q[2]*invS, q[3]*invS);
+}
+
+Quaternion operator*(const float s, const Quaternion& q) {
+ return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
+}
+
+Quaternion operator*(const Quaternion& q, const float s) {
+ return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
+}
+
+Quaternion operator-(const Quaternion& q) {
+ return Quaternion(-q[0], -q[1], -q[2], -q[3]);
+}
+
+Quaternion operator+(const Quaternion& q1, const Quaternion& q2) {
+ return Quaternion(q1[0] + q2[0], q1[1] + q2[1], q1[2] + q2[2], q1[3] + q2[3]);
+}
+
+Quaternion operator-(const Quaternion& q1, const Quaternion& q2) {
+ return Quaternion(q1[0] - q2[0], q1[1] - q2[1], q1[2] - q2[2], q1[3] - q2[3]);
+}
+
+} // end namespace
|