summaryrefslogtreecommitdiffstats
path: root/dev/MinGfx/src/vector3.cc
diff options
context:
space:
mode:
authorMatt Strapp <matt@mattstrapp.net>2021-09-20 18:15:14 -0500
committerMatt Strapp <matt@mattstrapp.net>2021-09-20 18:15:14 -0500
commit342403a02f8063903d0f38327430721d4d0ae331 (patch)
tree29d020a27bc16939c568dd4b29166566d1c0e658 /dev/MinGfx/src/vector3.cc
parentFix parenthesis (diff)
downloadcsci4611-submission-p1.0.tar
csci4611-submission-p1.0.tar.gz
csci4611-submission-p1.0.tar.bz2
csci4611-submission-p1.0.tar.lz
csci4611-submission-p1.0.tar.xz
csci4611-submission-p1.0.tar.zst
csci4611-submission-p1.0.zip
Diffstat (limited to '')
-rw-r--r--dev/MinGfx/src/vector3.cc412
1 files changed, 206 insertions, 206 deletions
diff --git a/dev/MinGfx/src/vector3.cc b/dev/MinGfx/src/vector3.cc
index 7848f48..949e8c5 100644
--- a/dev/MinGfx/src/vector3.cc
+++ b/dev/MinGfx/src/vector3.cc
@@ -1,206 +1,206 @@
-/*
- Copyright (c) 2017,2018 Regents of the University of Minnesota.
- All Rights Reserved.
- See corresponding header file for details.
- */
-
-#include "vector3.h"
-
-#include <math.h>
-
-namespace mingfx {
-
-static const Vector3 s_zerov3d = Vector3(0,0,0);
-static const Vector3 s_onev3d = Vector3(1,1,1);
-static const Vector3 s_unitxv3d = Vector3(1,0,0);
-static const Vector3 s_unityv3d = Vector3(0,1,0);
-static const Vector3 s_unitzv3d = Vector3(0,0,1);
-
-const Vector3& Vector3::Zero() { return s_zerov3d; }
-const Vector3& Vector3::One() { return s_onev3d; }
-const Vector3& Vector3::UnitX() { return s_unitxv3d; }
-const Vector3& Vector3::UnitY() { return s_unityv3d; }
-const Vector3& Vector3::UnitZ() { return s_unitzv3d; }
-
-
-Vector3::Vector3() {
- v[0] = 0.0;
- v[1] = 0.0;
- v[2] = 0.0;
-}
-
-Vector3::Vector3(float x, float y, float z) {
- v[0] = x;
- v[1] = y;
- v[2] = z;
-}
-
-Vector3::Vector3(float *ptr) {
- v[0] = ptr[0];
- v[1] = ptr[1];
- v[2] = ptr[2];
-}
-
-Vector3::Vector3(const Vector3& other) {
- v[0] = other[0];
- v[1] = other[1];
- v[2] = other[2];
-}
-
-Vector3::~Vector3() {
-}
-
-bool Vector3::operator==(const Vector3& other) const {
- return (fabs(other[0] - v[0]) < MINGFX_MATH_EPSILON &&
- fabs(other[1] - v[1]) < MINGFX_MATH_EPSILON &&
- fabs(other[2] - v[2]) < MINGFX_MATH_EPSILON);
-}
-
-bool Vector3::operator!=(const Vector3& other) const {
- return (fabs(other[0] - v[0]) >= MINGFX_MATH_EPSILON ||
- fabs(other[1] - v[1]) >= MINGFX_MATH_EPSILON ||
- fabs(other[2] - v[2]) >= MINGFX_MATH_EPSILON);
-}
-
-Vector3& Vector3::operator=(const Vector3& other) {
- v[0] = other[0];
- v[1] = other[1];
- v[2] = other[2];
- return *this;
-}
-
-float Vector3::operator[](const int i) const {
- if ((i>=0) && (i<=2)) {
- return v[i];
- }
- else {
- // w component of a vector is 0 so return the constant 0.0
- return 0.0;
- }
-}
-
-float& Vector3::operator[](const int i) {
- return v[i];
-}
-
-float Vector3::Dot(const Vector3& other) const {
- return v[0]*other[0] + v[1]*other[1] + v[2]*other[2];
-}
-
-Vector3 Vector3::Cross(const Vector3& other) const {
- return Vector3(v[1] * other[2] - v[2] * other[1],
- v[2] * other[0] - v[0] * other[2],
- v[0] * other[1] - v[1] * other[0]);
-}
-
-float Vector3::Length() const {
- return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
-}
-
-void Vector3::Normalize() {
- // Hill & Kelley provide this:
- float sizeSq = + v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
- if (sizeSq < MINGFX_MATH_EPSILON) {
- return; // do nothing to zero vectors;
- }
- float scaleFactor = (float)1.0/(float)sqrt(sizeSq);
- v[0] *= scaleFactor;
- v[1] *= scaleFactor;
- v[2] *= scaleFactor;
-}
-
-
-Vector3 Vector3::ToUnit() const {
- Vector3 v(*this);
- v.Normalize();
- return v;
-}
-
-const float * Vector3::value_ptr() const {
- return v;
-}
-
-
-
-Vector3 Vector3::Normalize(const Vector3 &v) {
- return v.ToUnit();
-}
-
-Vector3 Vector3::Cross(const Vector3 &v1, const Vector3 &v2) {
- return v1.Cross(v2);
-}
-
-float Vector3::Dot(const Vector3 &v1, const Vector3 &v2) {
- return v1.Dot(v2);
-}
-
-Vector3 Vector3::Lerp(const Vector3 &b, float alpha) const {
- float x = (1.0f-alpha)*(*this)[0] + alpha*b[0];
- float y = (1.0f-alpha)*(*this)[1] + alpha*b[1];
- float z = (1.0f-alpha)*(*this)[2] + alpha*b[2];
- return Vector3(x,y,z);
-}
-
-Vector3 Vector3::Lerp(const Vector3 &a, const Vector3 &b, float alpha) {
- float x = (1.0f-alpha)*a[0] + alpha*b[0];
- float y = (1.0f-alpha)*a[1] + alpha*b[1];
- float z = (1.0f-alpha)*a[2] + alpha*b[2];
- return Vector3(x,y,z);
-}
-
-
-
-Vector3 operator/(const Vector3& v, const float s) {
- const float invS = 1 / s;
- return Vector3(v[0]*invS, v[1]*invS, v[2]*invS);
-}
-
-Vector3 operator*(const float s, const Vector3& v) {
- return Vector3(v[0]*s, v[1]*s, v[2]*s);
-}
-
-Vector3 operator*(const Vector3& v, const float s) {
- return Vector3(v[0]*s, v[1]*s, v[2]*s);
-}
-
-Vector3 operator-(const Vector3& v) {
- return Vector3(-v[0], -v[1], -v[2]);
-}
-
-Point3 operator+(const Vector3& v, const Point3& p) {
- return Point3(p[0] + v[0], p[1] + v[1], p[2] + v[2]);
-};
-
-Point3 operator+(const Point3& p, const Vector3& v) {
- return Point3(p[0] + v[0], p[1] + v[1], p[2] + v[2]);
-}
-
-Vector3 operator+(const Vector3& v1, const Vector3& v2) {
- return Vector3(v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]);
-}
-
-Point3 operator-(const Point3& p, const Vector3& v) {
- return Point3(p[0] - v[0], p[1] - v[1], p[2] - v[2]);
-}
-
-Vector3 operator-(const Vector3& v1, const Vector3& v2) {
- return Vector3(v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]);
-}
-
-Vector3 operator-(const Point3& p1, const Point3& p2) {
- return Vector3(p1[0] - p2[0], p1[1] - p2[1], p1[2] - p2[2]);
-}
-
-
-std::ostream & operator<< ( std::ostream &os, const Vector3 &v) {
- return os << "<" << v[0] << ", " << v[1] << ", " << v[2] << ">";
-}
-
-std::istream & operator>> ( std::istream &is, Vector3 &v) {
- // format: <x, y, z>
- char dummy;
- return is >> dummy >> v[0] >> dummy >> v[1] >> dummy >> v[2] >> dummy;
-}
-
-
-} // end namespace
+/*
+ Copyright (c) 2017,2018 Regents of the University of Minnesota.
+ All Rights Reserved.
+ See corresponding header file for details.
+ */
+
+#include "vector3.h"
+
+#include <math.h>
+
+namespace mingfx {
+
+static const Vector3 s_zerov3d = Vector3(0,0,0);
+static const Vector3 s_onev3d = Vector3(1,1,1);
+static const Vector3 s_unitxv3d = Vector3(1,0,0);
+static const Vector3 s_unityv3d = Vector3(0,1,0);
+static const Vector3 s_unitzv3d = Vector3(0,0,1);
+
+const Vector3& Vector3::Zero() { return s_zerov3d; }
+const Vector3& Vector3::One() { return s_onev3d; }
+const Vector3& Vector3::UnitX() { return s_unitxv3d; }
+const Vector3& Vector3::UnitY() { return s_unityv3d; }
+const Vector3& Vector3::UnitZ() { return s_unitzv3d; }
+
+
+Vector3::Vector3() {
+ v[0] = 0.0;
+ v[1] = 0.0;
+ v[2] = 0.0;
+}
+
+Vector3::Vector3(float x, float y, float z) {
+ v[0] = x;
+ v[1] = y;
+ v[2] = z;
+}
+
+Vector3::Vector3(float *ptr) {
+ v[0] = ptr[0];
+ v[1] = ptr[1];
+ v[2] = ptr[2];
+}
+
+Vector3::Vector3(const Vector3& other) {
+ v[0] = other[0];
+ v[1] = other[1];
+ v[2] = other[2];
+}
+
+Vector3::~Vector3() {
+}
+
+bool Vector3::operator==(const Vector3& other) const {
+ return (fabs(other[0] - v[0]) < MINGFX_MATH_EPSILON &&
+ fabs(other[1] - v[1]) < MINGFX_MATH_EPSILON &&
+ fabs(other[2] - v[2]) < MINGFX_MATH_EPSILON);
+}
+
+bool Vector3::operator!=(const Vector3& other) const {
+ return (fabs(other[0] - v[0]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[1] - v[1]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[2] - v[2]) >= MINGFX_MATH_EPSILON);
+}
+
+Vector3& Vector3::operator=(const Vector3& other) {
+ v[0] = other[0];
+ v[1] = other[1];
+ v[2] = other[2];
+ return *this;
+}
+
+float Vector3::operator[](const int i) const {
+ if ((i>=0) && (i<=2)) {
+ return v[i];
+ }
+ else {
+ // w component of a vector is 0 so return the constant 0.0
+ return 0.0;
+ }
+}
+
+float& Vector3::operator[](const int i) {
+ return v[i];
+}
+
+float Vector3::Dot(const Vector3& other) const {
+ return v[0]*other[0] + v[1]*other[1] + v[2]*other[2];
+}
+
+Vector3 Vector3::Cross(const Vector3& other) const {
+ return Vector3(v[1] * other[2] - v[2] * other[1],
+ v[2] * other[0] - v[0] * other[2],
+ v[0] * other[1] - v[1] * other[0]);
+}
+
+float Vector3::Length() const {
+ return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
+}
+
+void Vector3::Normalize() {
+ // Hill & Kelley provide this:
+ float sizeSq = + v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
+ if (sizeSq < MINGFX_MATH_EPSILON) {
+ return; // do nothing to zero vectors;
+ }
+ float scaleFactor = (float)1.0/(float)sqrt(sizeSq);
+ v[0] *= scaleFactor;
+ v[1] *= scaleFactor;
+ v[2] *= scaleFactor;
+}
+
+
+Vector3 Vector3::ToUnit() const {
+ Vector3 v(*this);
+ v.Normalize();
+ return v;
+}
+
+const float * Vector3::value_ptr() const {
+ return v;
+}
+
+
+
+Vector3 Vector3::Normalize(const Vector3 &v) {
+ return v.ToUnit();
+}
+
+Vector3 Vector3::Cross(const Vector3 &v1, const Vector3 &v2) {
+ return v1.Cross(v2);
+}
+
+float Vector3::Dot(const Vector3 &v1, const Vector3 &v2) {
+ return v1.Dot(v2);
+}
+
+Vector3 Vector3::Lerp(const Vector3 &b, float alpha) const {
+ float x = (1.0f-alpha)*(*this)[0] + alpha*b[0];
+ float y = (1.0f-alpha)*(*this)[1] + alpha*b[1];
+ float z = (1.0f-alpha)*(*this)[2] + alpha*b[2];
+ return Vector3(x,y,z);
+}
+
+Vector3 Vector3::Lerp(const Vector3 &a, const Vector3 &b, float alpha) {
+ float x = (1.0f-alpha)*a[0] + alpha*b[0];
+ float y = (1.0f-alpha)*a[1] + alpha*b[1];
+ float z = (1.0f-alpha)*a[2] + alpha*b[2];
+ return Vector3(x,y,z);
+}
+
+
+
+Vector3 operator/(const Vector3& v, const float s) {
+ const float invS = 1 / s;
+ return Vector3(v[0]*invS, v[1]*invS, v[2]*invS);
+}
+
+Vector3 operator*(const float s, const Vector3& v) {
+ return Vector3(v[0]*s, v[1]*s, v[2]*s);
+}
+
+Vector3 operator*(const Vector3& v, const float s) {
+ return Vector3(v[0]*s, v[1]*s, v[2]*s);
+}
+
+Vector3 operator-(const Vector3& v) {
+ return Vector3(-v[0], -v[1], -v[2]);
+}
+
+Point3 operator+(const Vector3& v, const Point3& p) {
+ return Point3(p[0] + v[0], p[1] + v[1], p[2] + v[2]);
+};
+
+Point3 operator+(const Point3& p, const Vector3& v) {
+ return Point3(p[0] + v[0], p[1] + v[1], p[2] + v[2]);
+}
+
+Vector3 operator+(const Vector3& v1, const Vector3& v2) {
+ return Vector3(v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]);
+}
+
+Point3 operator-(const Point3& p, const Vector3& v) {
+ return Point3(p[0] - v[0], p[1] - v[1], p[2] - v[2]);
+}
+
+Vector3 operator-(const Vector3& v1, const Vector3& v2) {
+ return Vector3(v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]);
+}
+
+Vector3 operator-(const Point3& p1, const Point3& p2) {
+ return Vector3(p1[0] - p2[0], p1[1] - p2[1], p1[2] - p2[2]);
+}
+
+
+std::ostream & operator<< ( std::ostream &os, const Vector3 &v) {
+ return os << "<" << v[0] << ", " << v[1] << ", " << v[2] << ">";
+}
+
+std::istream & operator>> ( std::istream &is, Vector3 &v) {
+ // format: <x, y, z>
+ char dummy;
+ return is >> dummy >> v[0] >> dummy >> v[1] >> dummy >> v[2] >> dummy;
+}
+
+
+} // end namespace