diff options
Diffstat (limited to '')
-rw-r--r-- | dev/MinGfx/src/matrix4.cc | 445 |
1 files changed, 445 insertions, 0 deletions
diff --git a/dev/MinGfx/src/matrix4.cc b/dev/MinGfx/src/matrix4.cc new file mode 100644 index 0000000..e38909c --- /dev/null +++ b/dev/MinGfx/src/matrix4.cc @@ -0,0 +1,445 @@ +/* + Copyright (c) 2017,2018 Regents of the University of Minnesota. + All Rights Reserved. + See corresponding header file for details. + */ + +#include "matrix4.h" + +#include "gfxmath.h" +#include <string.h> + +namespace mingfx { + + +Matrix4::Matrix4() { + m[0] = m[5] = m[10] = m[15] = 1.0; + m[1] = m[2] = m[3] = m[4] = 0.0; + m[6] = m[7] = m[8] = m[9] = 0.0; + m[11]= m[12] = m[13] = m[14] = 0.0; +} + + +Matrix4::Matrix4(const float* a) { + memcpy(m,a,16*sizeof(float)); +} + +Matrix4::Matrix4(const std::vector<float> &a) { + for (int i=0;i<16;i++) { + m[i] = a[i]; + } +} + +Matrix4::Matrix4(const Matrix4& m2) { + memcpy(m,m2.m,16*sizeof(float)); +} + +Matrix4::~Matrix4() { +} + + +bool Matrix4::operator==(const Matrix4& m2) const { + for (int i=0;i<16;i++) { + if (fabs(m2.m[i] - m[i]) > MINGFX_MATH_EPSILON) { + return false; + } + } + return true; +} + +bool Matrix4::operator!=(const Matrix4& m2) const { + return !(*this == m2); +} + +Matrix4& Matrix4::operator=(const Matrix4& m2) { + memcpy(m,m2.m,16*sizeof(float)); + return *this; +} + +const float * Matrix4::value_ptr() const { + return m; +} + +float Matrix4::operator[](const int i) const { + return m[i]; +} + +float& Matrix4::operator[](const int i) { + return m[i]; +} + +float Matrix4::operator()(const int r, const int c) const { + return m[c*4+r]; +} + +float& Matrix4::operator()(const int r, const int c) { + return m[c*4+r]; +} + +std::vector<float> Matrix4::ToVector() const { + std::vector<float> v; + for (int i=0;i<16;i++) { + v.push_back(m[i]); + } + return v; +} + + + +Matrix4 Matrix4::Scale(const Vector3& v) { + return Matrix4::FromRowMajorElements( + v[0], 0, 0, 0, + 0, v[1], 0, 0, + 0, 0, v[2], 0, + 0, 0, 0, 1 + ); +} + + +Matrix4 Matrix4::Translation(const Vector3& v) { + return Matrix4::FromRowMajorElements( + 1, 0, 0, v[0], + 0, 1, 0, v[1], + 0, 0, 1, v[2], + 0, 0, 0, 1 + ); +} + + +Matrix4 Matrix4::RotationX(const float radians) { + const float cosTheta = cos(radians); + const float sinTheta = sin(radians); + return Matrix4::FromRowMajorElements( + 1, 0, 0, 0, + 0, cosTheta, -sinTheta, 0, + 0, sinTheta, cosTheta, 0, + 0, 0, 0, 1 + ); +} + + +Matrix4 Matrix4::RotationY(const float radians) { + const float cosTheta = cos(radians); + const float sinTheta = sin(radians); + return Matrix4::FromRowMajorElements( + cosTheta, 0, sinTheta, 0, + 0, 1, 0, 0, + -sinTheta, 0, cosTheta, 0, + 0, 0, 0, 1 + ); +} + + +Matrix4 Matrix4::RotationZ(const float radians) { + const float cosTheta = cos(radians); + const float sinTheta = sin(radians); + return Matrix4::FromRowMajorElements( + cosTheta, -sinTheta, 0, 0, + sinTheta, cosTheta, 0, 0, + 0, 0, 1, 0, + 0, 0, 0, 1 + ); +} + + +Matrix4 Matrix4::Rotation(const Point3& p, const Vector3& v, const float a) { + const float vZ = v[2]; + const float vX = v[0]; + const float theta = atan2(vZ, vX); + const float phi = -atan2((float)v[1], (float)sqrt(vX * vX + vZ * vZ)); + + const Matrix4 transToOrigin = Matrix4::Translation(-1.0*Vector3(p[0], p[1], p[2])); + const Matrix4 A = Matrix4::RotationY(theta); + const Matrix4 B = Matrix4::RotationZ(phi); + const Matrix4 C = Matrix4::RotationX(a); + const Matrix4 invA = Matrix4::RotationY(-theta); + const Matrix4 invB = Matrix4::RotationZ(-phi); + const Matrix4 transBack = Matrix4::Translation(Vector3(p[0], p[1], p[2])); + + return transBack * invA * invB * C * B * A * transToOrigin; +} + + +Matrix4 Matrix4::Align(const Point3 &a_p, const Vector3 &a_v1, const Vector3 &a_v2, + const Point3 &b_p, const Vector3 &b_v1, const Vector3 &b_v2) +{ + Vector3 ax = a_v1.ToUnit(); + Vector3 ay = a_v2.ToUnit(); + Vector3 az = ax.Cross(ay).ToUnit(); + ay = az.Cross(ax); + Matrix4 A = Matrix4::FromRowMajorElements(ax[0], ay[0], az[0], a_p[0], + ax[1], ay[1], az[1], a_p[1], + ax[2], ay[2], az[2], a_p[2], + 0, 0, 0, 1); + + Vector3 bx = b_v1.ToUnit(); + Vector3 by = b_v2.ToUnit(); + Vector3 bz = bx.Cross(by).ToUnit(); + by = bz.Cross(bx); + Matrix4 B = Matrix4::FromRowMajorElements(bx[0], by[0], bz[0], b_p[0], + bx[1], by[1], bz[1], b_p[1], + bx[2], by[2], bz[2], b_p[2], + 0, 0, 0, 1); + return B * A.Inverse(); +} + + + +Matrix4 Matrix4::LookAt(Point3 eye, Point3 target, Vector3 up) { + Vector3 lookDir = (target - eye).ToUnit(); + + // desired x,y,z for the camera itself + Vector3 z = -lookDir; + Vector3 x = up.Cross(z).ToUnit(); + Vector3 y = z.Cross(x); + + // for the view matrix rotation, we want the inverse of the rotation for the + // camera, and the inverse of a rotation matrix is its transpose, so the + // x,y,z colums become x,y,z rows. + Matrix4 R = Matrix4::FromRowMajorElements( + x[0], x[1], x[2], 0, + y[0], y[1], y[2], 0, + z[0], z[1], z[2], 0, + 0, 0, 0, 1 + ); + + // also need to translate by -eye + Matrix4 T = Matrix4::Translation(Point3(0,0,0) - eye); + + return R * T; +} + +Matrix4 Matrix4::Perspective(float fovyInDegrees, float aspectRatio, + float nearVal, float farVal) +{ + // https://www.khronos.org/opengl/wiki/GluPerspective_code + float ymax, xmax; + ymax = nearVal * tanf(fovyInDegrees * GfxMath::PI / 360.0f); + // ymin = -ymax; + // xmin = -ymax * aspectRatio; + xmax = ymax * aspectRatio; + return Matrix4::Frustum(-xmax, xmax, -ymax, ymax, nearVal, farVal); +} + + +Matrix4 Matrix4::Frustum(float left, float right, + float bottom, float top, + float nearVal, float farVal) +{ + return Matrix4::FromRowMajorElements( + 2.0f*nearVal/(right-left), 0.0f, (right+left)/(right-left), 0.0f, + 0.0f, 2.0f*nearVal/(top-bottom), (top+bottom)/(top-bottom), 0.0f, + 0.0f, 0.0f, -(farVal+nearVal)/(farVal-nearVal), -2.0f*farVal*nearVal/(farVal-nearVal), + 0.0f, 0.0f, -1.0f, 0.0 + ); +} + + +Matrix4 Matrix4::FromRowMajorElements( + const float r1c1, const float r1c2, const float r1c3, const float r1c4, + const float r2c1, const float r2c2, const float r2c3, const float r2c4, + const float r3c1, const float r3c2, const float r3c3, const float r3c4, + const float r4c1, const float r4c2, const float r4c3, const float r4c4) +{ + float m[16]; + m[0]=r1c1; m[4]=r1c2; m[8]=r1c3; m[12]=r1c4; + m[1]=r2c1; m[5]=r2c2; m[9]=r2c3; m[13]=r2c4; + m[2]=r3c1; m[6]=r3c2; m[10]=r3c3; m[14]=r3c4; + m[3]=r4c1; m[7]=r4c2; m[11]=r4c3; m[15]=r4c4; + return Matrix4(m); +} + + + + +Matrix4 Matrix4::Orthonormal() const { + Vector3 x = ColumnToVector3(0).ToUnit(); + Vector3 y = ColumnToVector3(1); + y = (y - y.Dot(x)*x).ToUnit(); + Vector3 z = x.Cross(y).ToUnit(); + return Matrix4::FromRowMajorElements( + x[0], y[0], z[0], m[12], + x[1], y[1], z[1], m[13], + x[2], y[2], z[2], m[14], + m[3], m[7], m[11], m[15] + ); +} + + +Matrix4 Matrix4::Transpose() const { + return Matrix4::FromRowMajorElements( + m[0], m[1], m[2], m[3], + m[4], m[5], m[6], m[7], + m[8], m[9], m[10], m[11], + m[12], m[13], m[14], m[15] + ); +} + + + + +// Returns the determinant of the 3x3 matrix formed by excluding the specified row and column +// from the 4x4 matrix. The formula for the determinant of a 3x3 is discussed on +// page 705 of Hill & Kelley, but note that there is a typo within the m_ij indices in the +// equation in the book that corresponds to the cofactor02 line in the code below. +float Matrix4::SubDeterminant(int excludeRow, int excludeCol) const { + // Compute non-excluded row and column indices + int row[3]; + int col[3]; + + int r=0; + int c=0; + for (int i=0; i<4; i++) { + if (i != excludeRow) { + row[r] = i; + r++; + } + if (i != excludeCol) { + col[c] = i; + c++; + } + } + + // Compute the cofactors of each element in the first row + float cofactor00 = (*this)(row[1],col[1]) * (*this)(row[2],col[2]) - (*this)(row[1],col[2]) * (*this)(row[2],col[1]); + float cofactor01 = - ((*this)(row[1],col[0]) * (*this)(row[2],col[2]) - (*this)(row[1],col[2]) * (*this)(row[2],col[0])); + float cofactor02 = (*this)(row[1],col[0]) * (*this)(row[2],col[1]) - (*this)(row[1],col[1]) * (*this)(row[2],col[0]); + + // The determinant is then the dot product of the first row and the cofactors of the first row + return (*this)(row[0],col[0])*cofactor00 + (*this)(row[0],col[1])*cofactor01 + (*this)(row[0],col[2])*cofactor02; +} + +// Returns the cofactor matrix. The cofactor matrix is a matrix where each element c_ij is the cofactor +// of the corresponding element m_ij in M. The cofactor of each element m_ij is defined as (-1)^(i+j) times +// the determinant of the "submatrix" formed by deleting the i-th row and j-th column from M. +// See the definition in section A2.1.4 (page 705) in Hill & Kelley. +Matrix4 Matrix4::Cofactor() const { + Matrix4 out; + // We'll use i to incrementally compute -1^(r+c) + int i = 1; + for (int r = 0; r < 4; ++r) { + for (int c = 0; c < 4; ++c) { + // Compute the determinant of the 3x3 submatrix + float det = SubDeterminant(r, c); + out(r,c) = i * det; + i = -i; + } + i = -i; + } + return out; +} + +// Returns the determinant of the 4x4 matrix +// See the hint in step 2 in Appendix A2.1.5 (page 706) in Hill & Kelley to learn how to compute this +float Matrix4::Determinant() const { + // The determinant is the dot product of any row of C (the cofactor matrix of m) with the corresponding row of m + Matrix4 C = Cofactor(); + return C(0,0)*(*this)(0,0) + C(0,1)*(*this)(0,1) + C(0,2)*(*this)(0,2) + C(0,3)*(*this)(0,3); +} + +// Returns the inverse of the 4x4 matrix if it is nonsingular. If it is singular, then returns the +// identity matrix. +Matrix4 Matrix4::Inverse() const { + // Check for singular matrix + float det = Determinant(); + if (fabs(det) < 1e-8) { + return Matrix4(); + } + + // m in nonsingular, so compute inverse using the 4-step procedure outlined in Appendix A2.1.5 + // (page 706) in Hill & Kelley + // 1. Find cofactor matrix C + Matrix4 C = Cofactor(); + // 2. Find the determinant of M as the dot prod of any row of C with the corresponding row of M. + // det = determinant(m); + // 3. Transpose C to get Ctrans + Matrix4 Ctrans = C.Transpose(); + // 4. Scale each element of Ctrans by (1/det) + return Ctrans * (1.0f / det); +} + + +Vector3 Matrix4::ColumnToVector3(int c) const { + return Vector3(m[c*4], m[c*4+1], m[c*4+2]); +} + +Point3 Matrix4::ColumnToPoint3(int c) const { + return Point3(m[c*4], m[c*4+1], m[c*4+2]); +} + + + + +Matrix4 operator*(const Matrix4& m, const float& s) { + Matrix4 result; + for (int r = 0; r < 4; r++) { + for (int c = 0; c < 4; c++) { + result(r,c) = m(r,c) * s; + } + } + return result; +} + +Matrix4 operator*(const float& s, const Matrix4& m) { + return m*s; +} + + +Point3 operator*(const Matrix4& m, const Point3& p) { + // For our points, p[3]=1 and we don't even bother storing p[3], so need to homogenize + // by dividing by w before returning the new point. + const float winv = 1.0f / (p[0] * m(3,0) + p[1] * m(3,1) + p[2] * m(3,2) + 1.0f * m(3,3)); + return Point3(winv * (p[0] * m(0,0) + p[1] * m(0,1) + p[2] * m(0,2) + 1.0f * m(0,3)), + winv * (p[0] * m(1,0) + p[1] * m(1,1) + p[2] * m(1,2) + 1.0f * m(1,3)), + winv * (p[0] * m(2,0) + p[1] * m(2,1) + p[2] * m(2,2) + 1.0f * m(2,3))); + +} + + +Vector3 operator*(const Matrix4& m, const Vector3& v) { + // For a vector v[3]=0 + return Vector3(v[0] * m(0,0) + v[1] * m(0,1) + v[2] * m(0,2), + v[0] * m(1,0) + v[1] * m(1,1) + v[2] * m(1,2), + v[0] * m(2,0) + v[1] * m(2,1) + v[2] * m(2,2)); + +} + + + +Matrix4 operator*(const Matrix4& m1, const Matrix4& m2) { + Matrix4 m = Matrix4::FromRowMajorElements(0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0); + for (int r = 0; r < 4; r++) { + for (int c = 0; c < 4; c++) { + for (int i = 0; i < 4; i++) { + m(r,c) += m1(r,i) * m2(i,c); + } + } + } + return m; +} + +Ray operator*(const Matrix4& m, const Ray& r) { + Point3 p = m * r.origin(); + Vector3 d = m * r.direction(); + return Ray(p, d); +} + + +std::ostream & operator<< ( std::ostream &os, const Matrix4 &m) { + // format: [[r1c1, r1c2, r1c3, r1c4], [r2c1, r2c2, r2c3, r2c4], etc.. ] + return os << "[[" << m(0,0) << ", " << m(0,1) << ", " << m(0,2) << ", " << m(0,3) << "], " + << "[" << m(1,0) << ", " << m(1,1) << ", " << m(1,2) << ", " << m(1,3) << "], " + << "[" << m(2,0) << ", " << m(2,1) << ", " << m(2,2) << ", " << m(2,3) << "], " + << "[" << m(3,0) << ", " << m(3,1) << ", " << m(3,2) << ", " << m(3,3) << "]]"; +} + +std::istream & operator>> ( std::istream &is, Matrix4 &m) { + // format: [[r1c1, r1c2, r1c3, r1c4], [r2c1, r2c2, r2c3, r2c4], etc.. ] + char c; + return is >> c >> c >> m(0,0) >> c >> m(0,1) >> c >> m(0,2) >> c >> m(0,3) >> c >> c + >> c >> m(1,0) >> c >> m(1,1) >> c >> m(1,2) >> c >> m(1,3) >> c >> c + >> c >> m(2,0) >> c >> m(2,1) >> c >> m(2,2) >> c >> m(2,3) >> c >> c + >> c >> m(3,0) >> c >> m(3,1) >> c >> m(3,2) >> c >> m(3,3) >> c >> c; +} + +} // end namespace |