diff options
Diffstat (limited to '')
-rw-r--r-- | dev/MinGfx/src/gfxmath.cc | 274 | ||||
-rw-r--r-- | dev/MinGfx/src/gfxmath.h | 192 | ||||
-rw-r--r-- | dev/MinGfx/src/quaternion.cc | 522 | ||||
-rw-r--r-- | dev/MinGfx/src/quick_shapes.cc | 1466 | ||||
-rw-r--r-- | dev/MinGfx/src/ray.h | 332 |
5 files changed, 1393 insertions, 1393 deletions
diff --git a/dev/MinGfx/src/gfxmath.cc b/dev/MinGfx/src/gfxmath.cc index 28cfedf..19d99ef 100644 --- a/dev/MinGfx/src/gfxmath.cc +++ b/dev/MinGfx/src/gfxmath.cc @@ -1,137 +1,137 @@ -/* - Copyright (c) 2017,2018 Regents of the University of Minnesota. - All Rights Reserved. - See corresponding header file for details. - */ - -#include "gfxmath.h" - -#define _USE_MATH_DEFINES -#include <math.h> -#include <algorithm> - -#include "ray.h" - - -namespace mingfx { - -const float GfxMath::PI = 3.14159265359f; -const float GfxMath::TWO_PI = 6.28318530718f; -const float GfxMath::HALF_PI = 1.57079632679f; - -float GfxMath::sin(float a) { -#ifdef WIN32 - return std::sinf(a); -#else - return std::sin(a); -#endif -} - -float GfxMath::cos(float a) { -#ifdef WIN32 - return std::cosf(a); -#else - return std::cos(a); -#endif -} - -float GfxMath::tan(float a) { -#ifdef WIN32 - return std::tanf(a); -#else - return std::tan(a); -#endif -} - -float GfxMath::asin(float a) { -#ifdef WIN32 - return std::asinf(a); -#else - return std::asin(a); -#endif -} - -float GfxMath::acos(float a) { -#ifdef WIN32 - return std::acosf(a); -#else - return std::acos(a); -#endif -} - -float GfxMath::atan(float a) { -#ifdef WIN32 - return std::atanf(a); -#else - return std::atan(a); -#endif -} - -float GfxMath::atan2(float a, float b) { -#ifdef WIN32 - return std::atan2f(a, b); -#else - return std::atan2(a, b); -#endif -} - -float GfxMath::Clamp(float x, float a, float b) { - return std::min(std::max(x, a), b); -} - -float GfxMath::ToRadians(float degrees) { - return degrees * GfxMath::PI / 180.0f; -} - -float GfxMath::ToDegrees(float radians) { - return radians * 180.0f / GfxMath::PI; -} - -Vector3 GfxMath::ToRadians(Vector3 degrees) { - return Vector3(ToRadians(degrees[0]), ToRadians(degrees[1]), ToRadians(degrees[2])); -} - -Vector3 GfxMath::ToDegrees(Vector3 radians) { - return Vector3(ToDegrees(radians[0]), ToDegrees(radians[1]), ToDegrees(radians[2])); -} - -float GfxMath::Lerp(float a, float b, float alpha) { - return (1.0f-alpha)*a + alpha*b; -} - -int GfxMath::iLerp(int a, int b, float alpha) { - return (int)std::round((1.0f-alpha)*(float)a + alpha*(float)b); -} - -Point3 GfxMath::ScreenToNearPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint) { - Matrix4 filmPtToWorld = (P*V).Inverse(); - return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], -1.0); -} - - -Point3 GfxMath::ScreenToWorld(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float zValue) { - Matrix4 filmPtToWorld = (P*V).Inverse(); - float zneg1topos1 = zValue*2.0f - 1.0f; - return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], zneg1topos1); -} - - -Point3 GfxMath::ScreenToDepthPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float planeDepth) { - Point3 pNear = ScreenToNearPlane(V, P, ndcPoint); - - Matrix4 camMat = V.Inverse(); - Point3 eye = camMat.ColumnToPoint3(3); - Vector3 look = -camMat.ColumnToVector3(2); - - Ray r(eye, pNear - eye); - - Point3 p3D; - float t; - if (!r.IntersectPlane(eye + planeDepth*look, -look, &t, &p3D)) { - std::cerr << "filmplane2D_to_plane3D() error -- no intersection found!" << std::endl; - } - return p3D; -} - - -} // end namespace +/*
+ Copyright (c) 2017,2018 Regents of the University of Minnesota.
+ All Rights Reserved.
+ See corresponding header file for details.
+ */
+
+#include "gfxmath.h"
+
+#define _USE_MATH_DEFINES
+#include <math.h>
+#include <algorithm>
+
+#include "ray.h"
+
+
+namespace mingfx {
+
+const float GfxMath::PI = 3.14159265359f;
+const float GfxMath::TWO_PI = 6.28318530718f;
+const float GfxMath::HALF_PI = 1.57079632679f;
+
+float GfxMath::sin(float a) {
+#ifdef WIN32
+ return std::sinf(a);
+#else
+ return std::sin(a);
+#endif
+}
+
+float GfxMath::cos(float a) {
+#ifdef WIN32
+ return std::cosf(a);
+#else
+ return std::cos(a);
+#endif
+}
+
+float GfxMath::tan(float a) {
+#ifdef WIN32
+ return std::tanf(a);
+#else
+ return std::tan(a);
+#endif
+}
+
+float GfxMath::asin(float a) {
+#ifdef WIN32
+ return std::asinf(a);
+#else
+ return std::asin(a);
+#endif
+}
+
+float GfxMath::acos(float a) {
+#ifdef WIN32
+ return std::acosf(a);
+#else
+ return std::acos(a);
+#endif
+}
+
+float GfxMath::atan(float a) {
+#ifdef WIN32
+ return std::atanf(a);
+#else
+ return std::atan(a);
+#endif
+}
+
+float GfxMath::atan2(float a, float b) {
+#ifdef WIN32
+ return std::atan2f(a, b);
+#else
+ return std::atan2(a, b);
+#endif
+}
+
+float GfxMath::Clamp(float x, float a, float b) {
+ return std::min(std::max(x, a), b);
+}
+
+float GfxMath::ToRadians(float degrees) {
+ return degrees * GfxMath::PI / 180.0f;
+}
+
+float GfxMath::ToDegrees(float radians) {
+ return radians * 180.0f / GfxMath::PI;
+}
+
+Vector3 GfxMath::ToRadians(Vector3 degrees) {
+ return Vector3(ToRadians(degrees[0]), ToRadians(degrees[1]), ToRadians(degrees[2]));
+}
+
+Vector3 GfxMath::ToDegrees(Vector3 radians) {
+ return Vector3(ToDegrees(radians[0]), ToDegrees(radians[1]), ToDegrees(radians[2]));
+}
+
+float GfxMath::Lerp(float a, float b, float alpha) {
+ return (1.0f-alpha)*a + alpha*b;
+}
+
+int GfxMath::iLerp(int a, int b, float alpha) {
+ return (int)std::round((1.0f-alpha)*(float)a + alpha*(float)b);
+}
+
+Point3 GfxMath::ScreenToNearPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint) {
+ Matrix4 filmPtToWorld = (P*V).Inverse();
+ return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], -1.0);
+}
+
+
+Point3 GfxMath::ScreenToWorld(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float zValue) {
+ Matrix4 filmPtToWorld = (P*V).Inverse();
+ float zneg1topos1 = zValue*2.0f - 1.0f;
+ return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], zneg1topos1);
+}
+
+
+Point3 GfxMath::ScreenToDepthPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float planeDepth) {
+ Point3 pNear = ScreenToNearPlane(V, P, ndcPoint);
+
+ Matrix4 camMat = V.Inverse();
+ Point3 eye = camMat.ColumnToPoint3(3);
+ Vector3 look = -camMat.ColumnToVector3(2);
+
+ Ray r(eye, pNear - eye);
+
+ Point3 p3D;
+ float t;
+ if (!r.IntersectPlane(eye + planeDepth*look, -look, &t, &p3D)) {
+ std::cerr << "filmplane2D_to_plane3D() error -- no intersection found!" << std::endl;
+ }
+ return p3D;
+}
+
+
+} // end namespace
diff --git a/dev/MinGfx/src/gfxmath.h b/dev/MinGfx/src/gfxmath.h index 86c1061..3240072 100644 --- a/dev/MinGfx/src/gfxmath.h +++ b/dev/MinGfx/src/gfxmath.h @@ -1,97 +1,97 @@ -/* - This file is part of the MinGfx Project. - - Copyright (c) 2017,2018 Regents of the University of Minnesota. - All Rights Reserved. - - Original Author(s) of this File: - Dan Keefe, 2018, University of Minnesota - - Author(s) of Significant Updates/Modifications to the File: - ... - */ - -#ifndef SRC_GFXMATH_H_ -#define SRC_GFXMATH_H_ - -#include "point2.h" -#include "point3.h" -#include "vector3.h" -#include "matrix4.h" - -namespace mingfx { - - -/** This class holds a variety of static math functions that are useful to have - defined with creating graphics programs. - */ -class GfxMath { -public: - - /// MinGfx specific implementations of trigonometric functions included to - /// solve compilation issues between different platforms. - static float sin(float a); - - static float cos(float a); - - static float tan(float a); - - static float asin(float a); - - static float acos(float a); - - static float atan(float a); - - static float atan2(float a, float b); - - /// Returns a if x is less than a and b if x is greater than b. - static float Clamp(float x, float a, float b); - - static float ToRadians(float degrees); - - static float ToDegrees(float radians); - - static Vector3 ToRadians(Vector3 degrees); - - static Vector3 ToDegrees(Vector3 radians); - - static float Lerp(float a, float b, float alpha); - - static int iLerp(int a, int b, float alpha); - - /// Converts a 2D point on the filmplane represented in Normalized Device - /// Coorindates, which means (-1,1) for the top left corner of the screen and - /// (1,-1) for the bottom right corner, to a 3D point that lies on the camera's - /// near plane. Useful for converting mouse coordinates into a 3D point. - /// Remember that this uses NORMALIZED device coordinates for the screenPt, - /// not pixels. GraphicsApp and most other graphics engines report mouse move - /// events in pixels, so you need to convert these to normalized device coordinates - /// first. If you are using GraphicsApp, you can do this with: - /// Point2 normPos = graphicsApp->pixels_to_normalized_coordinates(mousePos); - static Point3 ScreenToNearPlane(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt); - - /// Similar to filmplane2D_to_nearplane3D() but here rather than using the - /// nearplane, you specify the depth of the plane to use as a distance away - /// from the camera's focal point. - static Point3 ScreenToDepthPlane(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt, float planeDepth); - - /// Converts a 2D point on the filmplane represented in Normalized Device - /// Coorindates, which means (-1,1) for the top left corner of the screen and - /// (1,-1) for the bottom right corner, to a 3D point in the world. The depth - /// buffer value under the pixel must be supplied. If you are using GraphicsApp, - /// you can use the mouse pos in pixels to get the required arguments like this: - /// Point2 normPos = graphicsApp->pixels_to_normalized_coordinates(mousePos); - /// float normZ = graphicsApp->z_value_at_pixel(mousePos); - static Point3 ScreenToWorld(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt, float normalizedZ); - - - static const float PI; - static const float TWO_PI; - static const float HALF_PI; -}; - - - -} // end namespace - +/*
+ This file is part of the MinGfx Project.
+
+ Copyright (c) 2017,2018 Regents of the University of Minnesota.
+ All Rights Reserved.
+
+ Original Author(s) of this File:
+ Dan Keefe, 2018, University of Minnesota
+
+ Author(s) of Significant Updates/Modifications to the File:
+ ...
+ */
+
+#ifndef SRC_GFXMATH_H_
+#define SRC_GFXMATH_H_
+
+#include "point2.h"
+#include "point3.h"
+#include "vector3.h"
+#include "matrix4.h"
+
+namespace mingfx {
+
+
+/** This class holds a variety of static math functions that are useful to have
+ defined with creating graphics programs.
+ */
+class GfxMath {
+public:
+
+ /// MinGfx specific implementations of trigonometric functions included to
+ /// solve compilation issues between different platforms.
+ static float sin(float a);
+
+ static float cos(float a);
+
+ static float tan(float a);
+
+ static float asin(float a);
+
+ static float acos(float a);
+
+ static float atan(float a);
+
+ static float atan2(float a, float b);
+
+ /// Returns a if x is less than a and b if x is greater than b.
+ static float Clamp(float x, float a, float b);
+
+ static float ToRadians(float degrees);
+
+ static float ToDegrees(float radians);
+
+ static Vector3 ToRadians(Vector3 degrees);
+
+ static Vector3 ToDegrees(Vector3 radians);
+
+ static float Lerp(float a, float b, float alpha);
+
+ static int iLerp(int a, int b, float alpha);
+
+ /// Converts a 2D point on the filmplane represented in Normalized Device
+ /// Coorindates, which means (-1,1) for the top left corner of the screen and
+ /// (1,-1) for the bottom right corner, to a 3D point that lies on the camera's
+ /// near plane. Useful for converting mouse coordinates into a 3D point.
+ /// Remember that this uses NORMALIZED device coordinates for the screenPt,
+ /// not pixels. GraphicsApp and most other graphics engines report mouse move
+ /// events in pixels, so you need to convert these to normalized device coordinates
+ /// first. If you are using GraphicsApp, you can do this with:
+ /// Point2 normPos = graphicsApp->pixels_to_normalized_coordinates(mousePos);
+ static Point3 ScreenToNearPlane(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt);
+
+ /// Similar to filmplane2D_to_nearplane3D() but here rather than using the
+ /// nearplane, you specify the depth of the plane to use as a distance away
+ /// from the camera's focal point.
+ static Point3 ScreenToDepthPlane(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt, float planeDepth);
+
+ /// Converts a 2D point on the filmplane represented in Normalized Device
+ /// Coorindates, which means (-1,1) for the top left corner of the screen and
+ /// (1,-1) for the bottom right corner, to a 3D point in the world. The depth
+ /// buffer value under the pixel must be supplied. If you are using GraphicsApp,
+ /// you can use the mouse pos in pixels to get the required arguments like this:
+ /// Point2 normPos = graphicsApp->pixels_to_normalized_coordinates(mousePos);
+ /// float normZ = graphicsApp->z_value_at_pixel(mousePos);
+ static Point3 ScreenToWorld(const Matrix4 &viewMatrix, const Matrix4 &projMatrix, const Point2 &normalizedScreenPt, float normalizedZ);
+
+
+ static const float PI;
+ static const float TWO_PI;
+ static const float HALF_PI;
+};
+
+
+
+} // end namespace
+
#endif
\ No newline at end of file diff --git a/dev/MinGfx/src/quaternion.cc b/dev/MinGfx/src/quaternion.cc index 24830c8..42723f1 100644 --- a/dev/MinGfx/src/quaternion.cc +++ b/dev/MinGfx/src/quaternion.cc @@ -1,261 +1,261 @@ -/* -Copyright (c) 2017,2018 Regents of the University of Minnesota. -All Rights Reserved. -See corresponding header file for details. -*/ - -#define _USE_MATH_DEFINES -#include "quaternion.h" - -#include "gfxmath.h" - -namespace mingfx { - - -Quaternion::Quaternion() { - q[0] = 0.0; - q[1] = 0.0; - q[2] = 0.0; - q[3] = 1.0; -} - -Quaternion::Quaternion(float qx, float qy, float qz, float qw) { - q[0] = qx; - q[1] = qy; - q[2] = qz; - q[3] = qw; -} - -Quaternion::Quaternion(float *ptr) { - q[0] = ptr[0]; - q[1] = ptr[1]; - q[2] = ptr[2]; - q[3] = ptr[3]; -} - -Quaternion::Quaternion(const Quaternion& other) { - q[0] = other[0]; - q[1] = other[1]; - q[2] = other[2]; - q[3] = other[3]; -} - -Quaternion::~Quaternion() { -} - -bool Quaternion::operator==(const Quaternion& other) const { - return (fabs(other[0] - q[0]) < MINGFX_MATH_EPSILON && - fabs(other[1] - q[1]) < MINGFX_MATH_EPSILON && - fabs(other[2] - q[2]) < MINGFX_MATH_EPSILON && - fabs(other[3] - q[3]) < MINGFX_MATH_EPSILON); -} - -bool Quaternion::operator!=(const Quaternion& other) const { - return (fabs(other[0] - q[0]) >= MINGFX_MATH_EPSILON || - fabs(other[1] - q[1]) >= MINGFX_MATH_EPSILON || - fabs(other[2] - q[2]) >= MINGFX_MATH_EPSILON || - fabs(other[3] - q[3]) >= MINGFX_MATH_EPSILON); -} - -Quaternion& Quaternion::operator=(const Quaternion& other) { - q[0] = other[0]; - q[1] = other[1]; - q[2] = other[2]; - q[3] = other[3]; - return *this; -} - -float Quaternion::operator[](const int i) const { - if ((i>=0) && (i<=3)) { - return q[i]; - } - else { - // this is an error! - return 0.0; - } -} - -float& Quaternion::operator[](const int i) { - return q[i]; -} - - -const float * Quaternion::value_ptr() const { - return q; -} - -Quaternion Quaternion::Slerp(const Quaternion &other, float alpha) const { - // https://en.wikipedia.org/wiki/Slerp - - Quaternion v0 = *this; - Quaternion v1 = other; - - // Only unit quaternions are valid rotations. - // Normalize to avoid undefined behavior. - v0.Normalize(); - v1.Normalize(); - - // Compute the cosine of the angle between the two vectors. - float dot = v0.Dot(v1); - - // If the dot product is negative, the quaternions - // have opposite handed-ness and slerp won't take - // the shorter path. Fix by reversing one quaternion. - if (dot < 0.0f) { - v1 = -v1; - dot = -dot; - } - - const double DOT_THRESHOLD = 0.9995; - if (dot > DOT_THRESHOLD) { - // If the inputs are too close for comfort, linearly interpolate - // and normalize the result. - - Quaternion result = v0 + alpha*(v1 - v0); - result.Normalize(); - return result; - } - - GfxMath::Clamp(dot, -1, 1); // Robustness: Stay within domain of acos() - float theta_0 = GfxMath::acos(dot); // theta_0 = angle between input vectors - float theta = theta_0 * alpha; // theta = angle between v0 and result - - float s0 = GfxMath::cos(theta) - dot - * GfxMath::sin(theta) / GfxMath::sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0) - float s1 = GfxMath::sin(theta) / GfxMath::sin(theta_0); - - return (s0 * v0) + (s1 * v1); -} - -Quaternion Quaternion::Slerp(const Quaternion &a, const Quaternion &b, float alpha) { - return a.Slerp(b, alpha); -} - - -std::ostream & operator<< ( std::ostream &os, const Quaternion &q) { - return os << "<" << q[0] << ", " << q[1] << ", " << q[2] << ", " << q[3] << ")"; -} - -std::istream & operator>> ( std::istream &is, Quaternion &q) { - // format: <qx, qy, qz, qw> - char dummy; - return is >> dummy >> q[0] >> dummy >> q[1] >> dummy >> q[2] >> dummy >> q[3] >> dummy; -} - - -float Quaternion::Dot(const Quaternion& other) const { - return q[0]*other[0] + q[1]*other[1] + q[2]*other[2] + q[3]*other[3]; - -} - -float Quaternion::Length() const { - return sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); -} - -void Quaternion::Normalize() { - float sizeSq = + q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]; - if (sizeSq < MINGFX_MATH_EPSILON) { - return; // do nothing to zero quats - } - float scaleFactor = (float)1.0/(float)sqrt(sizeSq); - q[0] *= scaleFactor; - q[1] *= scaleFactor; - q[2] *= scaleFactor; - q[3] *= scaleFactor; -} - -Quaternion Quaternion::ToUnit() const { - Quaternion qtmp(*this); - qtmp.Normalize(); - return qtmp; -} - -/// Returns the conjugate of the quaternion. -Quaternion Quaternion::Conjugate() const { - return Quaternion(-q[0], -q[1], -q[2], q[3]); -} - - -Quaternion Quaternion::FromAxisAngle(const Vector3 &axis, float angle) { - // [qx, qy, qz, qw] = [sin(a/2) * vx, sin(a/2)* vy, sin(a/2) * vz, cos(a/2)] - float x = GfxMath::sin(angle/2.0) * axis[0]; - float y = GfxMath::sin(angle/2.0) * axis[1]; - float z = GfxMath::sin(angle/2.0) * axis[2]; - float w = GfxMath::cos(angle/2.0); - return Quaternion(x,y,z,w); -} - - -Quaternion Quaternion::FromEulerAnglesZYX(const Vector3 &angles) { - Quaternion rot_x = Quaternion::FromAxisAngle(Vector3::UnitX(), angles[0]); - Quaternion rot_y = Quaternion::FromAxisAngle(Vector3::UnitY(), angles[1]); - Quaternion rot_z = Quaternion::FromAxisAngle(Vector3::UnitZ(), angles[2]); - return rot_z * rot_y * rot_x; -} - -Vector3 Quaternion::ToEulerAnglesZYX() const { - // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles - - Vector3 angles; - - // roll (x-axis rotation) - float sinr = +2.0f * (w() * x() + y() * z()); - float cosr = +1.0f - 2.0f * (x() * x() + y() * y()); - angles[0] = std::atan2(sinr, cosr); - - // pitch (y-axis rotation) - float sinp = +2.0f * (w() * y() - z() * x()); - if (std::fabs(sinp) >= 1.f) - angles[1] = std::copysign(GfxMath::HALF_PI, sinp); // use 90 degrees if out of range - else - angles[1] = std::asin(sinp); - - // yaw (z-axis rotation) - float siny = +2.0f * (w() * z() + x() * y()); - float cosy = +1.0f - 2.0f * (y() * y() + z() * z()); - angles[2] = std::atan2(siny, cosy); - - return angles; -} - - -Quaternion operator*(const Quaternion& q1, const Quaternion& q2) { - float real1 = q1[3]; - Vector3 imag1 = Vector3(q1[0], q1[1], q1[2]); - - float real2 = q2[3]; - Vector3 imag2 = Vector3(q2[0], q2[1], q2[2]); - - float real = real1*real2 - imag1.Dot(imag2); - Vector3 imag = real1*imag2 + real2*imag1 + imag1.Cross(imag2); - - return Quaternion(imag[0], imag[1], imag[2], real); -} - - -Quaternion operator/(const Quaternion& q, const float s) { - const float invS = 1.0f / s; - return Quaternion(q[0]*invS, q[1]*invS, q[2]*invS, q[3]*invS); -} - -Quaternion operator*(const float s, const Quaternion& q) { - return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s); -} - -Quaternion operator*(const Quaternion& q, const float s) { - return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s); -} - -Quaternion operator-(const Quaternion& q) { - return Quaternion(-q[0], -q[1], -q[2], -q[3]); -} - -Quaternion operator+(const Quaternion& q1, const Quaternion& q2) { - return Quaternion(q1[0] + q2[0], q1[1] + q2[1], q1[2] + q2[2], q1[3] + q2[3]); -} - -Quaternion operator-(const Quaternion& q1, const Quaternion& q2) { - return Quaternion(q1[0] - q2[0], q1[1] - q2[1], q1[2] - q2[2], q1[3] - q2[3]); -} - -} // end namespace +/*
+Copyright (c) 2017,2018 Regents of the University of Minnesota.
+All Rights Reserved.
+See corresponding header file for details.
+*/
+
+#define _USE_MATH_DEFINES
+#include "quaternion.h"
+
+#include "gfxmath.h"
+
+namespace mingfx {
+
+
+Quaternion::Quaternion() {
+ q[0] = 0.0;
+ q[1] = 0.0;
+ q[2] = 0.0;
+ q[3] = 1.0;
+}
+
+Quaternion::Quaternion(float qx, float qy, float qz, float qw) {
+ q[0] = qx;
+ q[1] = qy;
+ q[2] = qz;
+ q[3] = qw;
+}
+
+Quaternion::Quaternion(float *ptr) {
+ q[0] = ptr[0];
+ q[1] = ptr[1];
+ q[2] = ptr[2];
+ q[3] = ptr[3];
+}
+
+Quaternion::Quaternion(const Quaternion& other) {
+ q[0] = other[0];
+ q[1] = other[1];
+ q[2] = other[2];
+ q[3] = other[3];
+}
+
+Quaternion::~Quaternion() {
+}
+
+bool Quaternion::operator==(const Quaternion& other) const {
+ return (fabs(other[0] - q[0]) < MINGFX_MATH_EPSILON &&
+ fabs(other[1] - q[1]) < MINGFX_MATH_EPSILON &&
+ fabs(other[2] - q[2]) < MINGFX_MATH_EPSILON &&
+ fabs(other[3] - q[3]) < MINGFX_MATH_EPSILON);
+}
+
+bool Quaternion::operator!=(const Quaternion& other) const {
+ return (fabs(other[0] - q[0]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[1] - q[1]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[2] - q[2]) >= MINGFX_MATH_EPSILON ||
+ fabs(other[3] - q[3]) >= MINGFX_MATH_EPSILON);
+}
+
+Quaternion& Quaternion::operator=(const Quaternion& other) {
+ q[0] = other[0];
+ q[1] = other[1];
+ q[2] = other[2];
+ q[3] = other[3];
+ return *this;
+}
+
+float Quaternion::operator[](const int i) const {
+ if ((i>=0) && (i<=3)) {
+ return q[i];
+ }
+ else {
+ // this is an error!
+ return 0.0;
+ }
+}
+
+float& Quaternion::operator[](const int i) {
+ return q[i];
+}
+
+
+const float * Quaternion::value_ptr() const {
+ return q;
+}
+
+Quaternion Quaternion::Slerp(const Quaternion &other, float alpha) const {
+ // https://en.wikipedia.org/wiki/Slerp
+
+ Quaternion v0 = *this;
+ Quaternion v1 = other;
+
+ // Only unit quaternions are valid rotations.
+ // Normalize to avoid undefined behavior.
+ v0.Normalize();
+ v1.Normalize();
+
+ // Compute the cosine of the angle between the two vectors.
+ float dot = v0.Dot(v1);
+
+ // If the dot product is negative, the quaternions
+ // have opposite handed-ness and slerp won't take
+ // the shorter path. Fix by reversing one quaternion.
+ if (dot < 0.0f) {
+ v1 = -v1;
+ dot = -dot;
+ }
+
+ const double DOT_THRESHOLD = 0.9995;
+ if (dot > DOT_THRESHOLD) {
+ // If the inputs are too close for comfort, linearly interpolate
+ // and normalize the result.
+
+ Quaternion result = v0 + alpha*(v1 - v0);
+ result.Normalize();
+ return result;
+ }
+
+ GfxMath::Clamp(dot, -1, 1); // Robustness: Stay within domain of acos()
+ float theta_0 = GfxMath::acos(dot); // theta_0 = angle between input vectors
+ float theta = theta_0 * alpha; // theta = angle between v0 and result
+
+ float s0 = GfxMath::cos(theta) - dot
+ * GfxMath::sin(theta) / GfxMath::sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0)
+ float s1 = GfxMath::sin(theta) / GfxMath::sin(theta_0);
+
+ return (s0 * v0) + (s1 * v1);
+}
+
+Quaternion Quaternion::Slerp(const Quaternion &a, const Quaternion &b, float alpha) {
+ return a.Slerp(b, alpha);
+}
+
+
+std::ostream & operator<< ( std::ostream &os, const Quaternion &q) {
+ return os << "<" << q[0] << ", " << q[1] << ", " << q[2] << ", " << q[3] << ")";
+}
+
+std::istream & operator>> ( std::istream &is, Quaternion &q) {
+ // format: <qx, qy, qz, qw>
+ char dummy;
+ return is >> dummy >> q[0] >> dummy >> q[1] >> dummy >> q[2] >> dummy >> q[3] >> dummy;
+}
+
+
+float Quaternion::Dot(const Quaternion& other) const {
+ return q[0]*other[0] + q[1]*other[1] + q[2]*other[2] + q[3]*other[3];
+
+}
+
+float Quaternion::Length() const {
+ return sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
+}
+
+void Quaternion::Normalize() {
+ float sizeSq = + q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
+ if (sizeSq < MINGFX_MATH_EPSILON) {
+ return; // do nothing to zero quats
+ }
+ float scaleFactor = (float)1.0/(float)sqrt(sizeSq);
+ q[0] *= scaleFactor;
+ q[1] *= scaleFactor;
+ q[2] *= scaleFactor;
+ q[3] *= scaleFactor;
+}
+
+Quaternion Quaternion::ToUnit() const {
+ Quaternion qtmp(*this);
+ qtmp.Normalize();
+ return qtmp;
+}
+
+/// Returns the conjugate of the quaternion.
+Quaternion Quaternion::Conjugate() const {
+ return Quaternion(-q[0], -q[1], -q[2], q[3]);
+}
+
+
+Quaternion Quaternion::FromAxisAngle(const Vector3 &axis, float angle) {
+ // [qx, qy, qz, qw] = [sin(a/2) * vx, sin(a/2)* vy, sin(a/2) * vz, cos(a/2)]
+ float x = GfxMath::sin(angle/2.0) * axis[0];
+ float y = GfxMath::sin(angle/2.0) * axis[1];
+ float z = GfxMath::sin(angle/2.0) * axis[2];
+ float w = GfxMath::cos(angle/2.0);
+ return Quaternion(x,y,z,w);
+}
+
+
+Quaternion Quaternion::FromEulerAnglesZYX(const Vector3 &angles) {
+ Quaternion rot_x = Quaternion::FromAxisAngle(Vector3::UnitX(), angles[0]);
+ Quaternion rot_y = Quaternion::FromAxisAngle(Vector3::UnitY(), angles[1]);
+ Quaternion rot_z = Quaternion::FromAxisAngle(Vector3::UnitZ(), angles[2]);
+ return rot_z * rot_y * rot_x;
+}
+
+Vector3 Quaternion::ToEulerAnglesZYX() const {
+ // https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
+
+ Vector3 angles;
+
+ // roll (x-axis rotation)
+ float sinr = +2.0f * (w() * x() + y() * z());
+ float cosr = +1.0f - 2.0f * (x() * x() + y() * y());
+ angles[0] = std::atan2(sinr, cosr);
+
+ // pitch (y-axis rotation)
+ float sinp = +2.0f * (w() * y() - z() * x());
+ if (std::fabs(sinp) >= 1.f)
+ angles[1] = std::copysign(GfxMath::HALF_PI, sinp); // use 90 degrees if out of range
+ else
+ angles[1] = std::asin(sinp);
+
+ // yaw (z-axis rotation)
+ float siny = +2.0f * (w() * z() + x() * y());
+ float cosy = +1.0f - 2.0f * (y() * y() + z() * z());
+ angles[2] = std::atan2(siny, cosy);
+
+ return angles;
+}
+
+
+Quaternion operator*(const Quaternion& q1, const Quaternion& q2) {
+ float real1 = q1[3];
+ Vector3 imag1 = Vector3(q1[0], q1[1], q1[2]);
+
+ float real2 = q2[3];
+ Vector3 imag2 = Vector3(q2[0], q2[1], q2[2]);
+
+ float real = real1*real2 - imag1.Dot(imag2);
+ Vector3 imag = real1*imag2 + real2*imag1 + imag1.Cross(imag2);
+
+ return Quaternion(imag[0], imag[1], imag[2], real);
+}
+
+
+Quaternion operator/(const Quaternion& q, const float s) {
+ const float invS = 1.0f / s;
+ return Quaternion(q[0]*invS, q[1]*invS, q[2]*invS, q[3]*invS);
+}
+
+Quaternion operator*(const float s, const Quaternion& q) {
+ return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
+}
+
+Quaternion operator*(const Quaternion& q, const float s) {
+ return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
+}
+
+Quaternion operator-(const Quaternion& q) {
+ return Quaternion(-q[0], -q[1], -q[2], -q[3]);
+}
+
+Quaternion operator+(const Quaternion& q1, const Quaternion& q2) {
+ return Quaternion(q1[0] + q2[0], q1[1] + q2[1], q1[2] + q2[2], q1[3] + q2[3]);
+}
+
+Quaternion operator-(const Quaternion& q1, const Quaternion& q2) {
+ return Quaternion(q1[0] - q2[0], q1[1] - q2[1], q1[2] - q2[2], q1[3] - q2[3]);
+}
+
+} // end namespace
diff --git a/dev/MinGfx/src/quick_shapes.cc b/dev/MinGfx/src/quick_shapes.cc index 01f187a..e0e6888 100644 --- a/dev/MinGfx/src/quick_shapes.cc +++ b/dev/MinGfx/src/quick_shapes.cc @@ -1,733 +1,733 @@ -/* - Copyright (c) 2017,2018 Regents of the University of Minnesota. - All Rights Reserved. - See corresponding header file for details. - */ - -#include "quick_shapes.h" -#include "platform.h" - -#include <cmath> -#include <iostream> -#include <string> - -#include "gfxmath.h" - -namespace mingfx { - - - -#define PI 3.14159265359f -#define TWOPI 6.28318530718f - - - -// Helper datastructure for building shapes algorithmically -class Vertex { -public: - Vertex(GLfloat xx, GLfloat yy, GLfloat zz, GLfloat nnx, GLfloat nny, GLfloat nnz) : - x(xx), y(yy), z(zz), nx(nnx), ny(nny), nz(nnz) {} - - GLfloat x; - GLfloat y; - GLfloat z; - GLfloat nx; - GLfloat ny; - GLfloat nz; -}; - - - - -QuickShapes::QuickShapes() { -} - -QuickShapes::~QuickShapes() { -} - - - - -// ------------ CUBE ------------ - - -void QuickShapes::initCube() { - GLfloat vertices[] = { - 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f,-1.0f, 1.0f, // v0-v1-v2 (front) - -1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, // v2-v3-v0 - - 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f,-1.0f, // v0-v3-v4 (right) - 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, // v4-v5-v0 - - 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f,-1.0f, // v0-v5-v6 (top) - -1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, // v6-v1-v0 - - -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // v1-v6-v7 (left) - -1.0f,-1.0f,-1.0f, -1.0f,-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, // v7-v2-v1.0 - - -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, // v7-v4-v3 (bottom) - 1.0f,-1.0f, 1.0f, -1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, // v3-v2-v7 - - 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f,-1.0f, // v4-v7-v6 (back) - -1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f // v6-v5-v4 - }; - - GLfloat normals[] = { - 0, 0, 1, 0, 0, 1, 0, 0, 1, // v0-v1-v2 (front) - 0, 0, 1, 0, 0, 1, 0, 0, 1, // v2-v3-v0 - - 1, 0, 0, 1, 0, 0, 1, 0, 0, // v0-v3-v4 (right) - 1, 0, 0, 1, 0, 0, 1, 0, 0, // v4-v5-v0 - - 0, 1, 0, 0, 1, 0, 0, 1, 0, // v0-v5-v6 (top) - 0, 1, 0, 0, 1, 0, 0, 1, 0, // v6-v1-v0 - - -1, 0, 0, -1, 0, 0, -1, 0, 0, // v1-v6-v7 (left) - -1, 0, 0, -1, 0, 0, -1, 0, 0, // v7-v2-v1 - - 0,-1, 0, 0,-1, 0, 0,-1, 0, // v7-v4-v3 (bottom) - 0,-1, 0, 0,-1, 0, 0,-1, 0, // v3-v2-v7 - - 0, 0,-1, 0, 0,-1, 0, 0,-1, // v4-v7-v6 (back) - 0, 0,-1, 0, 0,-1, 0, 0,-1 // v6-v5-v4 - }; - - cubeMesh_.SetVertices(vertices, 36); - cubeMesh_.SetNormals(normals, 36); - cubeMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawCube(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (cubeMesh_.num_vertices() == 0) { - initCube(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &cubeMesh_, defaultMaterial_); -} - - - - -// ------------ SQUARE ------------ - - -void QuickShapes::initSquare() { - GLfloat vertices[] = { - 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,-1.0f, -1.0f, 0.0f,-1.0f, // v0-v5-v6 (top) - -1.0f, 0.0f,-1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f // v6-v1-v0 - }; - - GLfloat normals[] = { - 0, 1, 0, 0, 1, 0, 0, 1, 0, - 0, 1, 0, 0, 1, 0, 0, 1, 0 - }; - - GLfloat texcoords[] = { - 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f - }; - - squareMesh_.SetVertices(vertices, 6); - squareMesh_.SetNormals(normals, 6); - squareMesh_.SetTexCoords(0, texcoords, 6); - squareMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawSquare(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (squareMesh_.num_vertices() == 0) { - initSquare(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &squareMesh_, defaultMaterial_); -} - - -void QuickShapes::DrawSquare(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color, - const Texture2D &tex) -{ - if (squareMesh_.num_vertices() == 0) { - initSquare(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = tex; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &squareMesh_, defaultMaterial_); -} - - - - - -// ------------ CYLINDER ------------ - - -void QuickShapes::initCyl() { - - std::vector<Vertex> verts; - - Vertex top(0,1,0, 0,1,0); - Vertex bot(0,-1,0, 0,-1,0); - - const int nslices = 20; - for (int s=1; s<nslices+1; s++) { - GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices); - GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices); - - // one triangle on the top - verts.push_back(top); - verts.push_back(Vertex(xlast,1,zlast, 0,1,0)); - verts.push_back(Vertex(xnew,1,znew, 0,1,0)); - - // two triangles to create a rect on the side - verts.push_back(Vertex(xlast,1,zlast, xlast,0,zlast)); - verts.push_back(Vertex(xlast,-1,zlast, xlast,0,zlast)); - verts.push_back(Vertex(xnew,1,znew, xnew,0,znew)); - - verts.push_back(Vertex(xnew,-1,znew, xnew,0,znew)); - verts.push_back(Vertex(xnew,1,znew, xnew,0,znew)); - verts.push_back(Vertex(xlast,-1,zlast, xlast,0,zlast)); - - // one triangle on the bottom - verts.push_back(bot); - verts.push_back(Vertex(xnew,-1,znew, 0,-1,0)); - verts.push_back(Vertex(xlast,-1,zlast, 0,-1,0)); - } - - std::vector<Point3> vertices; - std::vector<Vector3> normals; - for (int i=0; i<verts.size(); i++) { - vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z)); - normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz)); - } - cylMesh_.SetVertices(vertices); - cylMesh_.SetNormals(normals); - cylMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawCylinder(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (cylMesh_.num_vertices() == 0) { - initCyl(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &cylMesh_, defaultMaterial_); -} - - - - -// ------------ CONE ------------ - - -void QuickShapes::initCone() { - - std::vector<Vertex> verts; - - Vertex top(0,1,0, 0,1,0); - Vertex bot(0,-1,0, 0,-1,0); - - const int nslices = 20; - for (int s=1; s<nslices+1; s++) { - GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices); - GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices); - - // one triangle on the side - // normals are a bit more complex than for other shapes... - Vector3 nlast = Vector3(xlast, 2, zlast).ToUnit(); - Vector3 nnew = Vector3(xnew, 2, znew).ToUnit(); - Vector3 ntop = 0.5*(nlast + nnew); - - verts.push_back(Vertex(top.x, top.y, top.z, ntop[0], ntop[1], ntop[2])); - verts.push_back(Vertex(xlast,-1,zlast, nlast[0], nlast[1], nlast[2])); - verts.push_back(Vertex(xnew,-1,znew, nnew[0], nnew[1], nnew[2])); - - // one triangle on the bottom - verts.push_back(bot); - verts.push_back(Vertex(xnew,-1,znew, 0,-1,0)); - verts.push_back(Vertex(xlast,-1,zlast, 0,-1,0)); - } - - std::vector<Point3> vertices; - std::vector<Vector3> normals; - for (int i = 0; i < verts.size(); i++) { - vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z)); - normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz)); - } - - coneMesh_.SetVertices(vertices); - coneMesh_.SetNormals(normals); - coneMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawCone(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (coneMesh_.num_vertices() == 0) { - initCone(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &coneMesh_, defaultMaterial_); -} - - - - - -// ------------ SPHERE ------------ - - -void QuickShapes::initSph() { - - std::vector<Vertex> verts; - - Vertex top(0,1,0, 0,1,0); - Vertex bot(0,-1,0, 0,-1,0); - - const int nslices = 40; - const int nstacks = 40; - for (int s=1; s<nslices+1; s++) { - GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices); - GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices); - GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices); - - float stackstep = PI/(float)nstacks; - - // one triangle on the top - verts.push_back(top); - verts.push_back(Vertex(GfxMath::sin(stackstep)*xlast,GfxMath::cos(stackstep), - GfxMath::sin(stackstep)*zlast, - GfxMath::sin(stackstep)*xlast,GfxMath::cos(stackstep), - GfxMath::sin(stackstep)*zlast)); - verts.push_back(Vertex(GfxMath::sin(stackstep)*xnew,GfxMath::cos(stackstep), - GfxMath::sin(stackstep)*znew, - GfxMath::sin(stackstep)*xnew,GfxMath::cos(stackstep), - GfxMath::sin(stackstep)*znew)); - - for (int t=2; t<nstacks; t++) { - GLfloat ylast = GfxMath::cos(PI*(float)(t-1)/(float)nstacks); - GLfloat ynew = GfxMath::cos(PI*(float)(t)/(float)nstacks); - - GLfloat rlast = GfxMath::sin(PI * (float)(t-1)/(float)nstacks); - GLfloat rnew = GfxMath::sin(PI * (float)(t)/(float)nstacks); - - // two triangles to create a rect on the side - verts.push_back(Vertex(rlast*xlast,ylast,rlast*zlast, rlast*xlast,ylast,rlast*zlast)); - verts.push_back(Vertex(rnew*xlast,ynew,rnew*zlast, rnew*xlast,ynew,rnew*zlast)); - verts.push_back(Vertex(rnew*xnew,ynew,rnew*znew, rnew*xnew,ynew,rnew*znew)); - - verts.push_back(Vertex(rnew*xnew,ynew,rnew*znew, rnew*xnew,ynew,rnew*znew)); - verts.push_back(Vertex(rlast*xnew,ylast,rlast*znew, rlast*xnew,ylast,rlast*znew)); - verts.push_back(Vertex(rlast*xlast,ylast,rlast*zlast, rlast*xlast,ylast,rlast*zlast)); - } - - // one triangle on the bottom - verts.push_back(bot); - verts.push_back(Vertex(GfxMath::sin(stackstep)*xnew,GfxMath::cos(PI-stackstep), - GfxMath::sin(stackstep)*znew, - GfxMath::sin(stackstep)*xnew,GfxMath::cos(PI-stackstep), - GfxMath::sin(stackstep)*znew)); - verts.push_back(Vertex(GfxMath::sin(stackstep)*xlast,GfxMath::cos(PI-stackstep), - GfxMath::sin(stackstep)*zlast, - GfxMath::sin(stackstep)*xlast,GfxMath::cos(PI-stackstep), - GfxMath::sin(stackstep)*zlast)); - } - - - std::vector<Point3> vertices; - std::vector<Vector3> normals; - for (int i = 0; i < verts.size(); i++) { - vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z)); - normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz)); - } - sphereMesh_.SetVertices(vertices); - sphereMesh_.SetNormals(normals); - sphereMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawSphere(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (sphereMesh_.num_vertices() == 0) { - initSph(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &sphereMesh_, defaultMaterial_); -} - - - - -// ------------ BRUSH ------------ - - -void QuickShapes::initBrush() { - - // Raw vertices -- points that make up the brush geometry - const GLfloat v[19][3] = { - { 0.5f, 0.0f, 0.0f}, // 0 - {-0.5f, 0.0f, 0.0f}, // 1 - - { 0.5f, 0.1f, 0.25f}, // 2 - {-0.5f, 0.1f, 0.25f}, // 3 - { 0.5f, 0.1f, 0.75f}, // 4 - {-0.5f, 0.1f, 0.75f}, // 5 - { 0.1f, 0.06f, 1.0f}, // 6 - {-0.1f, 0.06f, 1.0f}, // 7 - { 0.15f, 0.1f, 1.75f}, // 8 - {-0.15f, 0.1f, 1.75f}, // 9 - - { 0.0f, 0.0f, 1.85f}, // 10 - - { 0.5f, -0.1f, 0.25f}, // 11 - {-0.5f, -0.1f, 0.25f}, // 12 - { 0.5f, -0.1f, 0.75f}, // 13 - {-0.5f, -0.1f, 0.75f}, // 14 - { 0.1f, -0.06f, 1.0f}, // 15 - {-0.1f, -0.06f, 1.0f}, // 16 - { 0.15f, -0.1f, 1.75f}, // 17 - {-0.15f, -0.1f, 1.75f} // 18 - }; - - - // Vertices arranged into triangles - const GLfloat verts[34][3][3] = { - // top - {{v[0][0], v[0][1], v[0][2]}, {v[1][0], v[1][1], v[1][2]}, {v[2][0], v[2][1], v[2][2]}}, - {{v[1][0], v[1][1], v[1][2]}, {v[3][0], v[3][1], v[3][2]}, {v[2][0], v[2][1], v[2][2]}}, - - {{v[2][0], v[2][1], v[2][2]}, {v[3][0], v[3][1], v[3][2]}, {v[4][0], v[4][1], v[4][2]}}, - {{v[3][0], v[3][1], v[3][2]}, {v[5][0], v[5][1], v[5][2]}, {v[4][0], v[4][1], v[4][2]}}, - - {{v[4][0], v[4][1], v[4][2]}, {v[5][0], v[5][1], v[5][2]}, {v[6][0], v[6][1], v[6][2]}}, - {{v[5][0], v[5][1], v[5][2]}, {v[7][0], v[7][1], v[7][2]}, {v[6][0], v[6][1], v[6][2]}}, - - {{v[6][0], v[6][1], v[6][2]}, {v[7][0], v[7][1], v[7][2]}, {v[8][0], v[8][1], v[8][2]}}, - {{v[7][0], v[7][1], v[7][2]}, {v[9][0], v[9][1], v[9][2]}, {v[8][0], v[8][1], v[8][2]}}, - - {{v[8][0], v[8][1], v[8][2]}, {v[9][0], v[9][1], v[9][2]}, {v[10][0], v[10][1], v[10][2]}}, - - // bottom - {{v[0][0], v[0][1], v[0][2]}, {v[12][0], v[12][1], v[12][2]}, {v[1][0], v[1][1], v[1][2]}}, - {{v[11][0], v[11][1], v[11][2]}, {v[12][0], v[12][1], v[12][2]}, {v[0][0], v[0][1], v[0][2]}}, - - {{v[11][0], v[11][1], v[11][2]}, {v[14][0], v[14][1], v[14][2]}, {v[12][0], v[12][1], v[12][2]}}, - {{v[13][0], v[13][1], v[13][2]}, {v[14][0], v[14][1], v[14][2]}, {v[11][0], v[11][1], v[11][2]}}, - - {{v[13][0], v[13][1], v[13][2]}, {v[16][0], v[16][1], v[16][2]}, {v[14][0], v[14][1], v[14][2]}}, - {{v[15][0], v[15][1], v[15][2]}, {v[16][0], v[16][1], v[16][2]}, {v[13][0], v[13][1], v[13][2]}}, - - {{v[15][0], v[15][1], v[15][2]}, {v[18][0], v[18][1], v[18][2]}, {v[16][0], v[16][1], v[16][2]}}, - {{v[17][0], v[17][1], v[17][2]}, {v[18][0], v[18][1], v[18][2]}, {v[15][0], v[15][1], v[15][2]}}, - - {{v[18][0], v[18][1], v[18][2]}, {v[17][0], v[17][1], v[17][2]}, {v[10][0], v[10][1], v[10][2]}}, - - // one side - {{v[11][0], v[11][1], v[11][2]}, {v[0][0], v[0][1], v[0][2]}, {v[2][0], v[2][1], v[2][2]}}, - - {{v[11][0], v[11][1], v[11][2]}, {v[2][0], v[2][1], v[2][2]}, {v[4][0], v[4][1], v[4][2]}}, - {{v[4][0], v[4][1], v[4][2]}, {v[13][0], v[13][1], v[13][2]}, {v[11][0], v[11][1], v[11][2]}}, - - {{v[13][0], v[13][1], v[13][2]}, {v[4][0], v[4][1], v[4][2]}, {v[6][0], v[6][1], v[6][2]}}, - {{v[6][0], v[6][1], v[6][2]}, {v[15][0], v[15][1], v[15][2]}, {v[13][0], v[13][1], v[13][2]}}, - - {{v[15][0], v[15][1], v[15][2]}, {v[6][0], v[6][1], v[6][2]}, {v[8][0], v[8][1], v[8][2]}}, - {{v[8][0], v[8][1], v[8][2]}, {v[17][0], v[17][1], v[17][2]}, {v[15][0], v[15][1], v[15][2]}}, - - {{v[17][0], v[17][1], v[17][2]}, {v[8][0], v[8][1], v[8][2]}, {v[10][0], v[10][1], v[10][2]}}, - - // other side - {{v[3][0], v[3][1], v[3][2]}, {v[1][0], v[1][1], v[1][2]}, {v[12][0], v[12][1], v[12][2]}}, - - {{v[3][0], v[3][1], v[3][2]}, {v[12][0], v[12][1], v[12][2]}, {v[14][0], v[14][1], v[14][2]}}, - {{v[14][0], v[14][1], v[14][2]}, {v[5][0], v[5][1], v[5][2]}, {v[3][0], v[3][1], v[3][2]}}, - - {{v[5][0], v[5][1], v[5][2]}, {v[14][0], v[14][1], v[14][2]}, {v[16][0], v[16][1], v[16][2]}}, - {{v[16][0], v[16][1], v[16][2]}, {v[7][0], v[7][1], v[7][2]}, {v[5][0], v[5][1], v[5][2]}}, - - {{v[7][0], v[7][1], v[7][2]}, {v[16][0], v[16][1], v[16][2]}, {v[18][0], v[18][1], v[18][2]}}, - {{v[18][0], v[18][1], v[18][2]}, {v[9][0], v[9][1], v[9][2]}, {v[7][0], v[7][1], v[7][2]}}, - - {{v[9][0], v[9][1], v[9][2]}, {v[18][0], v[18][1], v[18][2]}, {v[10][0], v[10][1], v[10][2]}} - - }; - - - // Normals defined so as to make each face of the brush a flat surface - const GLfloat norms[34][3][3] = { - // top - {{0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}}, - {{0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}}, - - {{0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}}, - {{0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}}, - - {{0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}}, - {{0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}}, - - {{0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}}, - {{0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}}, - - {{0.0f, 0.709f, 0.709f}, {0.0f, 0.709f, 0.709f}, {0.0f, 0.709f, 0.709f}}, - - // bottom - {{0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}}, - {{0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}}, - - {{0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}}, - {{0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}}, - - {{0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}}, - {{0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}}, - - {{0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}}, - {{0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}}, - - {{0.0f, -0.709f, 0.709f}, {0.0f, -0.709f, 0.709f}, {0.0f, -0.709f, 0.709f}}, - - // one side - {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}}, - - {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}}, - {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}}, - - {{0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}}, - {{0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}}, - - {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}}, - {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}}, - - {{0.709f, 0.0f, 0.709f}, {0.709f, 0.0f, 0.709f}, {0.709f, 0.0f, 0.709f}}, - - // other side - {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}}, - - {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}}, - {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}}, - - {{-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}}, - {{-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}}, - - {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}}, - {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}}, - - {{-0.709f, 0.0f, 0.709f}, {-0.709f, 0.0f, 0.709f}, {-0.709f, 0.0f, 0.709f}} - }; - - brushMesh_.SetVertices((float*)verts, 102); - brushMesh_.SetNormals((float*)norms, 102); - brushMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawBrush(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, const Color &color) -{ - if (brushMesh_.num_vertices() == 0) { - initBrush(); - } - defaultMaterial_.ambient_reflectance = color; - defaultMaterial_.diffuse_reflectance = color; - defaultMaterial_.surface_texture = emptyTex_; - defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &brushMesh_, defaultMaterial_); -} - - - -// ---------------- - - -void QuickShapes::DrawLineSegment(const Matrix4 &modelMatrix, - const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, - const Color &color, - const Point3 &p1, - const Point3 &p2, - float radius) -{ - Matrix4 S = Matrix4::Scale(Vector3(radius, 0.5f*(p2-p1).Length(), radius)); - Vector3 y = (p2-p1).ToUnit(); - Vector3 z = Vector3(1,0,0).Cross(y).ToUnit(); - if (z == Vector3(0,0,0)) { - z = Vector3(0,0,1).Cross(y).ToUnit(); - } - Vector3 x = y.Cross(z); - Matrix4 R = Matrix4::FromRowMajorElements( - x[0], y[0], z[0], 0, - x[1], y[1], z[1], 0, - x[2], y[2], z[2], 0, - 0, 0, 0, 1 - ); - Matrix4 T = Matrix4::Translation(0.5 * Vector3(p1[0]+p2[0], p1[1]+p2[1], p1[2]+p2[2])); - - Matrix4 M = T * R * S; - - DrawCylinder(modelMatrix * M, viewMatrix, projectionMatrix, color); -} - - - -void QuickShapes::DrawLines(const Matrix4 &modelMatrix, - const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, - const Color &color, - const std::vector<Point3> &points, - LinesType ltype, - float radius) -{ - if (ltype == LinesType::LINES) { - for (size_t i=0; i<points.size(); i+=2) { - DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[i], points[i+1], radius); - } - } - else { - for (size_t i=0; i<points.size()-1; i++) { - DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[i], points[i+1], radius); - } - if (ltype == LinesType::LINE_LOOP) { - DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[points.size()-1], points[0], radius); - } - } -} - - - -void QuickShapes::DrawArrow(const Matrix4 &modelMatrix, - const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix, - const Color &color, - Point3 p, Vector3 dir, float radius) -{ - float d = dir.Length() - 8.0f*radius; - DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, p, p + d*dir.ToUnit(), radius); - - Matrix4 S = Matrix4::Scale(Vector3(radius*3.0f, radius*4.0f, radius*3.0f)); - Vector3 y = dir.ToUnit(); - Vector3 z = Vector3(1,0,0).Cross(y).ToUnit(); - if (z == Vector3(0,0,0)) { - z = Vector3(0,0,1).Cross(y).ToUnit(); - } - Vector3 x = y.Cross(z); - Matrix4 R = Matrix4::FromRowMajorElements( - x[0], y[0], z[0], 0, - x[1], y[1], z[1], 0, - x[2], y[2], z[2], 0, - 0, 0, 0, 1 - ); - Matrix4 T = Matrix4::Translation((p + d*dir.ToUnit()) - Point3::Origin()); - - Matrix4 M = T * R * S * Matrix4::Translation(Vector3(0,1,0)); - - DrawCone(modelMatrix * M, viewMatrix, projectionMatrix, color); -} - - -void QuickShapes::DrawAxes(const Matrix4 &modelMatrix, - const Matrix4 &viewMatrix, - const Matrix4 &projectionMatrix) -{ - DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(1.0f, 0.6f, 0.6f), Point3::Origin(), Vector3::UnitX(), 0.02f); - DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(0.6f, 1.0f, 0.6f), Point3::Origin(), Vector3::UnitY(), 0.02f); - DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(0.6f, 0.6f, 1.0f), Point3::Origin(), Vector3::UnitZ(), 0.02f); - -} - - -void QuickShapes::initFull() { - GLfloat vertices[] = { - -1, -1, 0, 1, -1, 0, 1, 1, 0, - -1, -1, 0, 1, 1, 0, -1, 1, 0 - }; - - GLfloat normals[] = { - 0, 0, 1, 0, 0, 1, 0, 0, 1, - 0, 0, 1, 0, 0, 1, 0, 0, 1 - }; - - GLfloat texcoords[] = { - 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, - 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f - }; - - fullMesh_.SetVertices(vertices, 6); - fullMesh_.SetNormals(normals, 6); - fullMesh_.SetTexCoords(0, texcoords, 6); - fullMesh_.UpdateGPUMemory(); -} - - -void QuickShapes::DrawFullscreenTexture(const Color &color, const Texture2D &tex) { - if (fullMesh_.num_vertices() == 0) { - initFull(); - } - DrawWithFullscreen(color, &fullMesh_, tex); -} - - - - - -void QuickShapes::DrawWithFullscreen(const Color &color, Mesh *mesh, const Texture2D &tex) { - if (!fullscreenShader_.initialized()) { - fullscreenShader_.AddVertexShaderFromFile(Platform::FindMinGfxShaderFile("fullscreen.vert")); - fullscreenShader_.AddFragmentShaderFromFile(Platform::FindMinGfxShaderFile("fullscreen.frag")); - fullscreenShader_.LinkProgram(); - } - - glDisable(GL_DEPTH_TEST); - glDepthMask(GL_FALSE); - - // Activate the shader program - fullscreenShader_.UseProgram(); - - // Pass uniforms and textures from C++ to the GPU Shader Program - fullscreenShader_.SetUniform("TintColor", color); - fullscreenShader_.BindTexture("SurfaceTexture", tex); - - // Draw the mesh using the shader program - mesh->Draw(); - - // Deactivate the shader program - fullscreenShader_.StopProgram(); - - glEnable(GL_DEPTH_TEST); - glDepthMask(GL_TRUE); -} - - -DefaultShader* QuickShapes::default_shader() { - return &defaultShader_; -} - - -DefaultShader::MaterialProperties* QuickShapes::material() { - return &defaultMaterial_; -} - - -} // end namespace +/*
+ Copyright (c) 2017,2018 Regents of the University of Minnesota.
+ All Rights Reserved.
+ See corresponding header file for details.
+ */
+
+#include "quick_shapes.h"
+#include "platform.h"
+
+#include <cmath>
+#include <iostream>
+#include <string>
+
+#include "gfxmath.h"
+
+namespace mingfx {
+
+
+
+#define PI 3.14159265359f
+#define TWOPI 6.28318530718f
+
+
+
+// Helper datastructure for building shapes algorithmically
+class Vertex {
+public:
+ Vertex(GLfloat xx, GLfloat yy, GLfloat zz, GLfloat nnx, GLfloat nny, GLfloat nnz) :
+ x(xx), y(yy), z(zz), nx(nnx), ny(nny), nz(nnz) {}
+
+ GLfloat x;
+ GLfloat y;
+ GLfloat z;
+ GLfloat nx;
+ GLfloat ny;
+ GLfloat nz;
+};
+
+
+
+
+QuickShapes::QuickShapes() {
+}
+
+QuickShapes::~QuickShapes() {
+}
+
+
+
+
+// ------------ CUBE ------------
+
+
+void QuickShapes::initCube() {
+ GLfloat vertices[] = {
+ 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f,-1.0f, 1.0f, // v0-v1-v2 (front)
+ -1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, // v2-v3-v0
+
+ 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f,-1.0f, // v0-v3-v4 (right)
+ 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, // v4-v5-v0
+
+ 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f,-1.0f, // v0-v5-v6 (top)
+ -1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, // v6-v1-v0
+
+ -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // v1-v6-v7 (left)
+ -1.0f,-1.0f,-1.0f, -1.0f,-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, // v7-v2-v1.0
+
+ -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, // v7-v4-v3 (bottom)
+ 1.0f,-1.0f, 1.0f, -1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, // v3-v2-v7
+
+ 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f,-1.0f, // v4-v7-v6 (back)
+ -1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f // v6-v5-v4
+ };
+
+ GLfloat normals[] = {
+ 0, 0, 1, 0, 0, 1, 0, 0, 1, // v0-v1-v2 (front)
+ 0, 0, 1, 0, 0, 1, 0, 0, 1, // v2-v3-v0
+
+ 1, 0, 0, 1, 0, 0, 1, 0, 0, // v0-v3-v4 (right)
+ 1, 0, 0, 1, 0, 0, 1, 0, 0, // v4-v5-v0
+
+ 0, 1, 0, 0, 1, 0, 0, 1, 0, // v0-v5-v6 (top)
+ 0, 1, 0, 0, 1, 0, 0, 1, 0, // v6-v1-v0
+
+ -1, 0, 0, -1, 0, 0, -1, 0, 0, // v1-v6-v7 (left)
+ -1, 0, 0, -1, 0, 0, -1, 0, 0, // v7-v2-v1
+
+ 0,-1, 0, 0,-1, 0, 0,-1, 0, // v7-v4-v3 (bottom)
+ 0,-1, 0, 0,-1, 0, 0,-1, 0, // v3-v2-v7
+
+ 0, 0,-1, 0, 0,-1, 0, 0,-1, // v4-v7-v6 (back)
+ 0, 0,-1, 0, 0,-1, 0, 0,-1 // v6-v5-v4
+ };
+
+ cubeMesh_.SetVertices(vertices, 36);
+ cubeMesh_.SetNormals(normals, 36);
+ cubeMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawCube(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (cubeMesh_.num_vertices() == 0) {
+ initCube();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &cubeMesh_, defaultMaterial_);
+}
+
+
+
+
+// ------------ SQUARE ------------
+
+
+void QuickShapes::initSquare() {
+ GLfloat vertices[] = {
+ 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,-1.0f, -1.0f, 0.0f,-1.0f, // v0-v5-v6 (top)
+ -1.0f, 0.0f,-1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f // v6-v1-v0
+ };
+
+ GLfloat normals[] = {
+ 0, 1, 0, 0, 1, 0, 0, 1, 0,
+ 0, 1, 0, 0, 1, 0, 0, 1, 0
+ };
+
+ GLfloat texcoords[] = {
+ 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f
+ };
+
+ squareMesh_.SetVertices(vertices, 6);
+ squareMesh_.SetNormals(normals, 6);
+ squareMesh_.SetTexCoords(0, texcoords, 6);
+ squareMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawSquare(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (squareMesh_.num_vertices() == 0) {
+ initSquare();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &squareMesh_, defaultMaterial_);
+}
+
+
+void QuickShapes::DrawSquare(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color,
+ const Texture2D &tex)
+{
+ if (squareMesh_.num_vertices() == 0) {
+ initSquare();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = tex;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &squareMesh_, defaultMaterial_);
+}
+
+
+
+
+
+// ------------ CYLINDER ------------
+
+
+void QuickShapes::initCyl() {
+
+ std::vector<Vertex> verts;
+
+ Vertex top(0,1,0, 0,1,0);
+ Vertex bot(0,-1,0, 0,-1,0);
+
+ const int nslices = 20;
+ for (int s=1; s<nslices+1; s++) {
+ GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices);
+ GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices);
+
+ // one triangle on the top
+ verts.push_back(top);
+ verts.push_back(Vertex(xlast,1,zlast, 0,1,0));
+ verts.push_back(Vertex(xnew,1,znew, 0,1,0));
+
+ // two triangles to create a rect on the side
+ verts.push_back(Vertex(xlast,1,zlast, xlast,0,zlast));
+ verts.push_back(Vertex(xlast,-1,zlast, xlast,0,zlast));
+ verts.push_back(Vertex(xnew,1,znew, xnew,0,znew));
+
+ verts.push_back(Vertex(xnew,-1,znew, xnew,0,znew));
+ verts.push_back(Vertex(xnew,1,znew, xnew,0,znew));
+ verts.push_back(Vertex(xlast,-1,zlast, xlast,0,zlast));
+
+ // one triangle on the bottom
+ verts.push_back(bot);
+ verts.push_back(Vertex(xnew,-1,znew, 0,-1,0));
+ verts.push_back(Vertex(xlast,-1,zlast, 0,-1,0));
+ }
+
+ std::vector<Point3> vertices;
+ std::vector<Vector3> normals;
+ for (int i=0; i<verts.size(); i++) {
+ vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z));
+ normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz));
+ }
+ cylMesh_.SetVertices(vertices);
+ cylMesh_.SetNormals(normals);
+ cylMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawCylinder(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (cylMesh_.num_vertices() == 0) {
+ initCyl();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &cylMesh_, defaultMaterial_);
+}
+
+
+
+
+// ------------ CONE ------------
+
+
+void QuickShapes::initCone() {
+
+ std::vector<Vertex> verts;
+
+ Vertex top(0,1,0, 0,1,0);
+ Vertex bot(0,-1,0, 0,-1,0);
+
+ const int nslices = 20;
+ for (int s=1; s<nslices+1; s++) {
+ GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices);
+ GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices);
+
+ // one triangle on the side
+ // normals are a bit more complex than for other shapes...
+ Vector3 nlast = Vector3(xlast, 2, zlast).ToUnit();
+ Vector3 nnew = Vector3(xnew, 2, znew).ToUnit();
+ Vector3 ntop = 0.5*(nlast + nnew);
+
+ verts.push_back(Vertex(top.x, top.y, top.z, ntop[0], ntop[1], ntop[2]));
+ verts.push_back(Vertex(xlast,-1,zlast, nlast[0], nlast[1], nlast[2]));
+ verts.push_back(Vertex(xnew,-1,znew, nnew[0], nnew[1], nnew[2]));
+
+ // one triangle on the bottom
+ verts.push_back(bot);
+ verts.push_back(Vertex(xnew,-1,znew, 0,-1,0));
+ verts.push_back(Vertex(xlast,-1,zlast, 0,-1,0));
+ }
+
+ std::vector<Point3> vertices;
+ std::vector<Vector3> normals;
+ for (int i = 0; i < verts.size(); i++) {
+ vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z));
+ normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz));
+ }
+
+ coneMesh_.SetVertices(vertices);
+ coneMesh_.SetNormals(normals);
+ coneMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawCone(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (coneMesh_.num_vertices() == 0) {
+ initCone();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &coneMesh_, defaultMaterial_);
+}
+
+
+
+
+
+// ------------ SPHERE ------------
+
+
+void QuickShapes::initSph() {
+
+ std::vector<Vertex> verts;
+
+ Vertex top(0,1,0, 0,1,0);
+ Vertex bot(0,-1,0, 0,-1,0);
+
+ const int nslices = 40;
+ const int nstacks = 40;
+ for (int s=1; s<nslices+1; s++) {
+ GLfloat xlast = GfxMath::cos(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat zlast = GfxMath::sin(-TWOPI * (float)(s-1)/(float)nslices);
+ GLfloat xnew = GfxMath::cos(-TWOPI * (float)(s)/(float)nslices);
+ GLfloat znew = GfxMath::sin(-TWOPI * (float)(s)/(float)nslices);
+
+ float stackstep = PI/(float)nstacks;
+
+ // one triangle on the top
+ verts.push_back(top);
+ verts.push_back(Vertex(GfxMath::sin(stackstep)*xlast,GfxMath::cos(stackstep),
+ GfxMath::sin(stackstep)*zlast,
+ GfxMath::sin(stackstep)*xlast,GfxMath::cos(stackstep),
+ GfxMath::sin(stackstep)*zlast));
+ verts.push_back(Vertex(GfxMath::sin(stackstep)*xnew,GfxMath::cos(stackstep),
+ GfxMath::sin(stackstep)*znew,
+ GfxMath::sin(stackstep)*xnew,GfxMath::cos(stackstep),
+ GfxMath::sin(stackstep)*znew));
+
+ for (int t=2; t<nstacks; t++) {
+ GLfloat ylast = GfxMath::cos(PI*(float)(t-1)/(float)nstacks);
+ GLfloat ynew = GfxMath::cos(PI*(float)(t)/(float)nstacks);
+
+ GLfloat rlast = GfxMath::sin(PI * (float)(t-1)/(float)nstacks);
+ GLfloat rnew = GfxMath::sin(PI * (float)(t)/(float)nstacks);
+
+ // two triangles to create a rect on the side
+ verts.push_back(Vertex(rlast*xlast,ylast,rlast*zlast, rlast*xlast,ylast,rlast*zlast));
+ verts.push_back(Vertex(rnew*xlast,ynew,rnew*zlast, rnew*xlast,ynew,rnew*zlast));
+ verts.push_back(Vertex(rnew*xnew,ynew,rnew*znew, rnew*xnew,ynew,rnew*znew));
+
+ verts.push_back(Vertex(rnew*xnew,ynew,rnew*znew, rnew*xnew,ynew,rnew*znew));
+ verts.push_back(Vertex(rlast*xnew,ylast,rlast*znew, rlast*xnew,ylast,rlast*znew));
+ verts.push_back(Vertex(rlast*xlast,ylast,rlast*zlast, rlast*xlast,ylast,rlast*zlast));
+ }
+
+ // one triangle on the bottom
+ verts.push_back(bot);
+ verts.push_back(Vertex(GfxMath::sin(stackstep)*xnew,GfxMath::cos(PI-stackstep),
+ GfxMath::sin(stackstep)*znew,
+ GfxMath::sin(stackstep)*xnew,GfxMath::cos(PI-stackstep),
+ GfxMath::sin(stackstep)*znew));
+ verts.push_back(Vertex(GfxMath::sin(stackstep)*xlast,GfxMath::cos(PI-stackstep),
+ GfxMath::sin(stackstep)*zlast,
+ GfxMath::sin(stackstep)*xlast,GfxMath::cos(PI-stackstep),
+ GfxMath::sin(stackstep)*zlast));
+ }
+
+
+ std::vector<Point3> vertices;
+ std::vector<Vector3> normals;
+ for (int i = 0; i < verts.size(); i++) {
+ vertices.push_back(Point3(verts[i].x, verts[i].y, verts[i].z));
+ normals.push_back(Vector3(verts[i].nx, verts[i].ny, verts[i].nz));
+ }
+ sphereMesh_.SetVertices(vertices);
+ sphereMesh_.SetNormals(normals);
+ sphereMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawSphere(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (sphereMesh_.num_vertices() == 0) {
+ initSph();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &sphereMesh_, defaultMaterial_);
+}
+
+
+
+
+// ------------ BRUSH ------------
+
+
+void QuickShapes::initBrush() {
+
+ // Raw vertices -- points that make up the brush geometry
+ const GLfloat v[19][3] = {
+ { 0.5f, 0.0f, 0.0f}, // 0
+ {-0.5f, 0.0f, 0.0f}, // 1
+
+ { 0.5f, 0.1f, 0.25f}, // 2
+ {-0.5f, 0.1f, 0.25f}, // 3
+ { 0.5f, 0.1f, 0.75f}, // 4
+ {-0.5f, 0.1f, 0.75f}, // 5
+ { 0.1f, 0.06f, 1.0f}, // 6
+ {-0.1f, 0.06f, 1.0f}, // 7
+ { 0.15f, 0.1f, 1.75f}, // 8
+ {-0.15f, 0.1f, 1.75f}, // 9
+
+ { 0.0f, 0.0f, 1.85f}, // 10
+
+ { 0.5f, -0.1f, 0.25f}, // 11
+ {-0.5f, -0.1f, 0.25f}, // 12
+ { 0.5f, -0.1f, 0.75f}, // 13
+ {-0.5f, -0.1f, 0.75f}, // 14
+ { 0.1f, -0.06f, 1.0f}, // 15
+ {-0.1f, -0.06f, 1.0f}, // 16
+ { 0.15f, -0.1f, 1.75f}, // 17
+ {-0.15f, -0.1f, 1.75f} // 18
+ };
+
+
+ // Vertices arranged into triangles
+ const GLfloat verts[34][3][3] = {
+ // top
+ {{v[0][0], v[0][1], v[0][2]}, {v[1][0], v[1][1], v[1][2]}, {v[2][0], v[2][1], v[2][2]}},
+ {{v[1][0], v[1][1], v[1][2]}, {v[3][0], v[3][1], v[3][2]}, {v[2][0], v[2][1], v[2][2]}},
+
+ {{v[2][0], v[2][1], v[2][2]}, {v[3][0], v[3][1], v[3][2]}, {v[4][0], v[4][1], v[4][2]}},
+ {{v[3][0], v[3][1], v[3][2]}, {v[5][0], v[5][1], v[5][2]}, {v[4][0], v[4][1], v[4][2]}},
+
+ {{v[4][0], v[4][1], v[4][2]}, {v[5][0], v[5][1], v[5][2]}, {v[6][0], v[6][1], v[6][2]}},
+ {{v[5][0], v[5][1], v[5][2]}, {v[7][0], v[7][1], v[7][2]}, {v[6][0], v[6][1], v[6][2]}},
+
+ {{v[6][0], v[6][1], v[6][2]}, {v[7][0], v[7][1], v[7][2]}, {v[8][0], v[8][1], v[8][2]}},
+ {{v[7][0], v[7][1], v[7][2]}, {v[9][0], v[9][1], v[9][2]}, {v[8][0], v[8][1], v[8][2]}},
+
+ {{v[8][0], v[8][1], v[8][2]}, {v[9][0], v[9][1], v[9][2]}, {v[10][0], v[10][1], v[10][2]}},
+
+ // bottom
+ {{v[0][0], v[0][1], v[0][2]}, {v[12][0], v[12][1], v[12][2]}, {v[1][0], v[1][1], v[1][2]}},
+ {{v[11][0], v[11][1], v[11][2]}, {v[12][0], v[12][1], v[12][2]}, {v[0][0], v[0][1], v[0][2]}},
+
+ {{v[11][0], v[11][1], v[11][2]}, {v[14][0], v[14][1], v[14][2]}, {v[12][0], v[12][1], v[12][2]}},
+ {{v[13][0], v[13][1], v[13][2]}, {v[14][0], v[14][1], v[14][2]}, {v[11][0], v[11][1], v[11][2]}},
+
+ {{v[13][0], v[13][1], v[13][2]}, {v[16][0], v[16][1], v[16][2]}, {v[14][0], v[14][1], v[14][2]}},
+ {{v[15][0], v[15][1], v[15][2]}, {v[16][0], v[16][1], v[16][2]}, {v[13][0], v[13][1], v[13][2]}},
+
+ {{v[15][0], v[15][1], v[15][2]}, {v[18][0], v[18][1], v[18][2]}, {v[16][0], v[16][1], v[16][2]}},
+ {{v[17][0], v[17][1], v[17][2]}, {v[18][0], v[18][1], v[18][2]}, {v[15][0], v[15][1], v[15][2]}},
+
+ {{v[18][0], v[18][1], v[18][2]}, {v[17][0], v[17][1], v[17][2]}, {v[10][0], v[10][1], v[10][2]}},
+
+ // one side
+ {{v[11][0], v[11][1], v[11][2]}, {v[0][0], v[0][1], v[0][2]}, {v[2][0], v[2][1], v[2][2]}},
+
+ {{v[11][0], v[11][1], v[11][2]}, {v[2][0], v[2][1], v[2][2]}, {v[4][0], v[4][1], v[4][2]}},
+ {{v[4][0], v[4][1], v[4][2]}, {v[13][0], v[13][1], v[13][2]}, {v[11][0], v[11][1], v[11][2]}},
+
+ {{v[13][0], v[13][1], v[13][2]}, {v[4][0], v[4][1], v[4][2]}, {v[6][0], v[6][1], v[6][2]}},
+ {{v[6][0], v[6][1], v[6][2]}, {v[15][0], v[15][1], v[15][2]}, {v[13][0], v[13][1], v[13][2]}},
+
+ {{v[15][0], v[15][1], v[15][2]}, {v[6][0], v[6][1], v[6][2]}, {v[8][0], v[8][1], v[8][2]}},
+ {{v[8][0], v[8][1], v[8][2]}, {v[17][0], v[17][1], v[17][2]}, {v[15][0], v[15][1], v[15][2]}},
+
+ {{v[17][0], v[17][1], v[17][2]}, {v[8][0], v[8][1], v[8][2]}, {v[10][0], v[10][1], v[10][2]}},
+
+ // other side
+ {{v[3][0], v[3][1], v[3][2]}, {v[1][0], v[1][1], v[1][2]}, {v[12][0], v[12][1], v[12][2]}},
+
+ {{v[3][0], v[3][1], v[3][2]}, {v[12][0], v[12][1], v[12][2]}, {v[14][0], v[14][1], v[14][2]}},
+ {{v[14][0], v[14][1], v[14][2]}, {v[5][0], v[5][1], v[5][2]}, {v[3][0], v[3][1], v[3][2]}},
+
+ {{v[5][0], v[5][1], v[5][2]}, {v[14][0], v[14][1], v[14][2]}, {v[16][0], v[16][1], v[16][2]}},
+ {{v[16][0], v[16][1], v[16][2]}, {v[7][0], v[7][1], v[7][2]}, {v[5][0], v[5][1], v[5][2]}},
+
+ {{v[7][0], v[7][1], v[7][2]}, {v[16][0], v[16][1], v[16][2]}, {v[18][0], v[18][1], v[18][2]}},
+ {{v[18][0], v[18][1], v[18][2]}, {v[9][0], v[9][1], v[9][2]}, {v[7][0], v[7][1], v[7][2]}},
+
+ {{v[9][0], v[9][1], v[9][2]}, {v[18][0], v[18][1], v[18][2]}, {v[10][0], v[10][1], v[10][2]}}
+
+ };
+
+
+ // Normals defined so as to make each face of the brush a flat surface
+ const GLfloat norms[34][3][3] = {
+ // top
+ {{0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}},
+ {{0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}, {0.0f, 0.93f, -0.37f}},
+
+ {{0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}},
+ {{0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}, {0.0f, 1.0f, 0.0f}},
+
+ {{0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}},
+ {{0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}, {0.0f, 0.988f, 0.158f}},
+
+ {{0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}},
+ {{0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}, {0.0f, 0.999f, -0.0533f}},
+
+ {{0.0f, 0.709f, 0.709f}, {0.0f, 0.709f, 0.709f}, {0.0f, 0.709f, 0.709f}},
+
+ // bottom
+ {{0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}},
+ {{0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}, {0.0f, -0.93f, -0.37f}},
+
+ {{0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}},
+ {{0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}, {0.0f, -1.0f, 0.0f}},
+
+ {{0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}},
+ {{0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}, {0.0f, -0.988f, 0.158f}},
+
+ {{0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}},
+ {{0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}, {0.0f, -0.999f, -0.0533f}},
+
+ {{0.0f, -0.709f, 0.709f}, {0.0f, -0.709f, 0.709f}, {0.0f, -0.709f, 0.709f}},
+
+ // one side
+ {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}},
+
+ {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}},
+ {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}},
+
+ {{0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}},
+ {{0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}, {0.848f, 0.0f, 0.530f}},
+
+ {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}},
+ {{1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}, {1.0f, 0.0f, 0.0f}},
+
+ {{0.709f, 0.0f, 0.709f}, {0.709f, 0.0f, 0.709f}, {0.709f, 0.0f, 0.709f}},
+
+ // other side
+ {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}},
+
+ {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}},
+ {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}},
+
+ {{-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}},
+ {{-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}, {-0.848f, 0.0f, 0.530f}},
+
+ {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}},
+ {{-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}},
+
+ {{-0.709f, 0.0f, 0.709f}, {-0.709f, 0.0f, 0.709f}, {-0.709f, 0.0f, 0.709f}}
+ };
+
+ brushMesh_.SetVertices((float*)verts, 102);
+ brushMesh_.SetNormals((float*)norms, 102);
+ brushMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawBrush(const Matrix4 &modelMatrix, const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix, const Color &color)
+{
+ if (brushMesh_.num_vertices() == 0) {
+ initBrush();
+ }
+ defaultMaterial_.ambient_reflectance = color;
+ defaultMaterial_.diffuse_reflectance = color;
+ defaultMaterial_.surface_texture = emptyTex_;
+ defaultShader_.Draw(modelMatrix, viewMatrix, projectionMatrix, &brushMesh_, defaultMaterial_);
+}
+
+
+
+// ----------------
+
+
+void QuickShapes::DrawLineSegment(const Matrix4 &modelMatrix,
+ const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix,
+ const Color &color,
+ const Point3 &p1,
+ const Point3 &p2,
+ float radius)
+{
+ Matrix4 S = Matrix4::Scale(Vector3(radius, 0.5f*(p2-p1).Length(), radius));
+ Vector3 y = (p2-p1).ToUnit();
+ Vector3 z = Vector3(1,0,0).Cross(y).ToUnit();
+ if (z == Vector3(0,0,0)) {
+ z = Vector3(0,0,1).Cross(y).ToUnit();
+ }
+ Vector3 x = y.Cross(z);
+ Matrix4 R = Matrix4::FromRowMajorElements(
+ x[0], y[0], z[0], 0,
+ x[1], y[1], z[1], 0,
+ x[2], y[2], z[2], 0,
+ 0, 0, 0, 1
+ );
+ Matrix4 T = Matrix4::Translation(0.5 * Vector3(p1[0]+p2[0], p1[1]+p2[1], p1[2]+p2[2]));
+
+ Matrix4 M = T * R * S;
+
+ DrawCylinder(modelMatrix * M, viewMatrix, projectionMatrix, color);
+}
+
+
+
+void QuickShapes::DrawLines(const Matrix4 &modelMatrix,
+ const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix,
+ const Color &color,
+ const std::vector<Point3> &points,
+ LinesType ltype,
+ float radius)
+{
+ if (ltype == LinesType::LINES) {
+ for (size_t i=0; i<points.size(); i+=2) {
+ DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[i], points[i+1], radius);
+ }
+ }
+ else {
+ for (size_t i=0; i<points.size()-1; i++) {
+ DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[i], points[i+1], radius);
+ }
+ if (ltype == LinesType::LINE_LOOP) {
+ DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, points[points.size()-1], points[0], radius);
+ }
+ }
+}
+
+
+
+void QuickShapes::DrawArrow(const Matrix4 &modelMatrix,
+ const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix,
+ const Color &color,
+ Point3 p, Vector3 dir, float radius)
+{
+ float d = dir.Length() - 8.0f*radius;
+ DrawLineSegment(modelMatrix, viewMatrix, projectionMatrix, color, p, p + d*dir.ToUnit(), radius);
+
+ Matrix4 S = Matrix4::Scale(Vector3(radius*3.0f, radius*4.0f, radius*3.0f));
+ Vector3 y = dir.ToUnit();
+ Vector3 z = Vector3(1,0,0).Cross(y).ToUnit();
+ if (z == Vector3(0,0,0)) {
+ z = Vector3(0,0,1).Cross(y).ToUnit();
+ }
+ Vector3 x = y.Cross(z);
+ Matrix4 R = Matrix4::FromRowMajorElements(
+ x[0], y[0], z[0], 0,
+ x[1], y[1], z[1], 0,
+ x[2], y[2], z[2], 0,
+ 0, 0, 0, 1
+ );
+ Matrix4 T = Matrix4::Translation((p + d*dir.ToUnit()) - Point3::Origin());
+
+ Matrix4 M = T * R * S * Matrix4::Translation(Vector3(0,1,0));
+
+ DrawCone(modelMatrix * M, viewMatrix, projectionMatrix, color);
+}
+
+
+void QuickShapes::DrawAxes(const Matrix4 &modelMatrix,
+ const Matrix4 &viewMatrix,
+ const Matrix4 &projectionMatrix)
+{
+ DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(1.0f, 0.6f, 0.6f), Point3::Origin(), Vector3::UnitX(), 0.02f);
+ DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(0.6f, 1.0f, 0.6f), Point3::Origin(), Vector3::UnitY(), 0.02f);
+ DrawArrow(modelMatrix, viewMatrix, projectionMatrix, Color(0.6f, 0.6f, 1.0f), Point3::Origin(), Vector3::UnitZ(), 0.02f);
+
+}
+
+
+void QuickShapes::initFull() {
+ GLfloat vertices[] = {
+ -1, -1, 0, 1, -1, 0, 1, 1, 0,
+ -1, -1, 0, 1, 1, 0, -1, 1, 0
+ };
+
+ GLfloat normals[] = {
+ 0, 0, 1, 0, 0, 1, 0, 0, 1,
+ 0, 0, 1, 0, 0, 1, 0, 0, 1
+ };
+
+ GLfloat texcoords[] = {
+ 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
+ 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f
+ };
+
+ fullMesh_.SetVertices(vertices, 6);
+ fullMesh_.SetNormals(normals, 6);
+ fullMesh_.SetTexCoords(0, texcoords, 6);
+ fullMesh_.UpdateGPUMemory();
+}
+
+
+void QuickShapes::DrawFullscreenTexture(const Color &color, const Texture2D &tex) {
+ if (fullMesh_.num_vertices() == 0) {
+ initFull();
+ }
+ DrawWithFullscreen(color, &fullMesh_, tex);
+}
+
+
+
+
+
+void QuickShapes::DrawWithFullscreen(const Color &color, Mesh *mesh, const Texture2D &tex) {
+ if (!fullscreenShader_.initialized()) {
+ fullscreenShader_.AddVertexShaderFromFile(Platform::FindMinGfxShaderFile("fullscreen.vert"));
+ fullscreenShader_.AddFragmentShaderFromFile(Platform::FindMinGfxShaderFile("fullscreen.frag"));
+ fullscreenShader_.LinkProgram();
+ }
+
+ glDisable(GL_DEPTH_TEST);
+ glDepthMask(GL_FALSE);
+
+ // Activate the shader program
+ fullscreenShader_.UseProgram();
+
+ // Pass uniforms and textures from C++ to the GPU Shader Program
+ fullscreenShader_.SetUniform("TintColor", color);
+ fullscreenShader_.BindTexture("SurfaceTexture", tex);
+
+ // Draw the mesh using the shader program
+ mesh->Draw();
+
+ // Deactivate the shader program
+ fullscreenShader_.StopProgram();
+
+ glEnable(GL_DEPTH_TEST);
+ glDepthMask(GL_TRUE);
+}
+
+
+DefaultShader* QuickShapes::default_shader() {
+ return &defaultShader_;
+}
+
+
+DefaultShader::MaterialProperties* QuickShapes::material() {
+ return &defaultMaterial_;
+}
+
+
+} // end namespace
diff --git a/dev/MinGfx/src/ray.h b/dev/MinGfx/src/ray.h index d1b41b6..4bc3a8c 100644 --- a/dev/MinGfx/src/ray.h +++ b/dev/MinGfx/src/ray.h @@ -1,166 +1,166 @@ -/* - This file is part of the MinGfx Project. - - Copyright (c) 2017,2018 Regents of the University of Minnesota. - All Rights Reserved. - - Original Author(s) of this File: - Dan Keefe, 2018, University of Minnesota - - Author(s) of Significant Updates/Modifications to the File: - ... - */ - -#ifndef SRC_RAY_H_ -#define SRC_RAY_H_ - -#include <iostream> - -#include "aabb.h" -#include "point3.h" -#include "vector3.h" -#include "mesh.h" - - -namespace mingfx { - - -/** Stores the mathematical object of a ray that begins at an origin (a 3D - point) and points in a direction (a unit 3D vector). Rays can intersect - a variety of other computer graphics objects, such as planes, triangles, - spheres, 3D meshes, etc. These intersections can be tested with the - Intersect...() methods. The Ray can also be transformed by a Matrix4. - Example: - ~~~ - // Create a pick ray from the mouse position - void MyGraphicsApp::OnLeftMouseDown(const Point2 &mouse_in_2d_pixels) { - Point2 mouse_in_2d_ndc = PixelsToNormalizedDeviceCoords(mouse_in_2d_pixels); - Point3 mouse_in_3d = GfxMath::ScreenToNearPlane(view_matrix, proj_matrix, mouse_in_2d_ndc); - Matrix4 camera_matrix = view_matrix.Inverse(); - Point3 eye = camera_matrix.ColumnToPoint3(3); - - Ray pick_ray(eye, mouse_in_3d - eye); - - // check to see if the ray intersects a sphere - float t; - Point3 p; - if (pick_ray.IntersectSphere(Point3(0,0,0), 2.0, &t, &p)) { - std::cout << "Mouse pointing at sphere! Intersection point = " << p << std::endl; - } - } - ~~~ - */ -class Ray { -public: - - /// Defaults to a ray at the origin and pointing in the -Z direction - Ray(); - - /// Creates a ray from a 3D origin and direction - Ray(const Point3 &origin, const Vector3 &direction); - - /// Ray destructor - virtual ~Ray(); - - /// Check for "equality", taking floating point imprecision into account - bool operator==(const Ray& other) const; - - /// Check for "inequality", taking floating point imprecision into account - bool operator!=(const Ray& other) const; - - /// Returns the length of the direction vector - float Length() const; - - /** Checks to see if the ray intersects a plane defined by a point and a normal. - If there was an intersection, true is returned, iTime is set to the intersection - time, and iPoint is set to the intersection point. The plane is considered - to be 1-sided. That is the intersection will only occur if the ray hits the - plane from its front side as determined by the plane's normal. - */ - bool IntersectPlane(const Point3 &planePt, const Vector3 &planeNormal, - float *iTime, Point3 *iPoint) const; - - /** Checks to see if the ray intersects a triangle defined by the vertices v1, v2, and v3. - The vertices must be provided in counter-clockwise order so that the normal of the - triangle can be determined via the right-hand rule. The intersection will only happen - if the ray hits the front side of the triangle. If there was an intersection, - true is returned, iTime is set to the intersection time, and iPoint is set to the intersection point. - */ - bool IntersectTriangle(const Point3 &v1, const Point3 &v2, const Point3 &v3, - float *iTime, Point3 *iPoint) const; - - /** Checks to see if the ray intersects a quad defined by the vertices v1, v2, v3, and v4. - The vertices must be provided in counter-clockwise order so that the normal of the - triangle can be determined via the right-hand rule. The intersection will only happen - if the ray hits the front side of the triangle. If there was an intersection, - true is returned, iTime is set to the intersection time, and iPoint is set to the intersection point. - */ - bool IntersectQuad(const Point3 &v1, const Point3 &v2, const Point3 &v3, const Point3 &v4, - float *iTime, Point3 *iPoint) const; - - /** Checks to see if the ray intersects a sphere defined by a center point and a radius. - If there was an intersection, true is returned, iTime is set to the intersection time, - and iPoint is set to the intersection point. - */ - bool IntersectSphere(const Point3 ¢er, float radius, - float *iTime, Point3 *iPoint) const; - - /** Checks to see if the ray intersects a triangle mesh. This is a brute-force - check over each triangle in the mesh. If there was an intersection, true is returned, - iTime is set to the intersection time, iPoint is set to the intersection point, - and iTriangleID is set to the ID of the closest intersected triangle along the ray. - */ - bool IntersectMesh(const Mesh &mesh, float *iTime, - Point3 *iPoint, int *iTriangleID) const; - - /** Checks to see if the ray intersects a triangle mesh. This uses a BVH - (Bounding Volume Hierarchy) to accelerate the ray-triangle intersection tests. - Each mesh can optionally store a BVH. If a BVH has already been calculated - for the mesh (done with Mesh::CalculateBVH()), then this function will be - much faster than the brute-force IntersectMesh() function. If a BVH has - not already been calculated for the mesh, the first call to FastIntersectMesh() - will trigger the mesh to create a BVH (not a fast operation) but then - subsequent calls to FastIntersectMesh() will be fast. - */ - bool FastIntersectMesh(Mesh *mesh, float *iTime, - Point3 *iPoint, int *iTriangleID) const; - - /** Checks to see if the ray intersects an AABB (Axis-Aligned Bounding Box). - Typically, this is the first step of a more detailed intersection test and - we don't care about the actual point of intersection, just whether it - intersects or not. So, we don't bother calculating the iPoint. We get the - iTime for free though, so we do return that. You can calc the iPoint if - you want using: - ~~~ - float t; - if (ray.IntersectAABB(box, &t)) { - Point3 iPoint = ray.origin() + t*ray.direction(); - } - ~~~ - */ - bool IntersectAABB(const AABB &box, float *iTime) const; - - /// Returns the origin - Point3 origin() const; - - /// Returns the direction - Vector3 direction() const; - - /// Sets a new origin and direction - void set(Point3 newOrigin, Vector3 newDir); - -private: - Point3 p_; - Vector3 d_; -}; - - -// --- Stream operators --- - -std::ostream & operator<< ( std::ostream &os, const Ray &r); -std::istream & operator>> ( std::istream &is, Ray &r); - - -} // end namespace - -#endif +/*
+ This file is part of the MinGfx Project.
+
+ Copyright (c) 2017,2018 Regents of the University of Minnesota.
+ All Rights Reserved.
+
+ Original Author(s) of this File:
+ Dan Keefe, 2018, University of Minnesota
+
+ Author(s) of Significant Updates/Modifications to the File:
+ ...
+ */
+
+#ifndef SRC_RAY_H_
+#define SRC_RAY_H_
+
+#include <iostream>
+
+#include "aabb.h"
+#include "point3.h"
+#include "vector3.h"
+#include "mesh.h"
+
+
+namespace mingfx {
+
+
+/** Stores the mathematical object of a ray that begins at an origin (a 3D
+ point) and points in a direction (a unit 3D vector). Rays can intersect
+ a variety of other computer graphics objects, such as planes, triangles,
+ spheres, 3D meshes, etc. These intersections can be tested with the
+ Intersect...() methods. The Ray can also be transformed by a Matrix4.
+ Example:
+ ~~~
+ // Create a pick ray from the mouse position
+ void MyGraphicsApp::OnLeftMouseDown(const Point2 &mouse_in_2d_pixels) {
+ Point2 mouse_in_2d_ndc = PixelsToNormalizedDeviceCoords(mouse_in_2d_pixels);
+ Point3 mouse_in_3d = GfxMath::ScreenToNearPlane(view_matrix, proj_matrix, mouse_in_2d_ndc);
+ Matrix4 camera_matrix = view_matrix.Inverse();
+ Point3 eye = camera_matrix.ColumnToPoint3(3);
+
+ Ray pick_ray(eye, mouse_in_3d - eye);
+
+ // check to see if the ray intersects a sphere
+ float t;
+ Point3 p;
+ if (pick_ray.IntersectSphere(Point3(0,0,0), 2.0, &t, &p)) {
+ std::cout << "Mouse pointing at sphere! Intersection point = " << p << std::endl;
+ }
+ }
+ ~~~
+ */
+class Ray {
+public:
+
+ /// Defaults to a ray at the origin and pointing in the -Z direction
+ Ray();
+
+ /// Creates a ray from a 3D origin and direction
+ Ray(const Point3 &origin, const Vector3 &direction);
+
+ /// Ray destructor
+ virtual ~Ray();
+
+ /// Check for "equality", taking floating point imprecision into account
+ bool operator==(const Ray& other) const;
+
+ /// Check for "inequality", taking floating point imprecision into account
+ bool operator!=(const Ray& other) const;
+
+ /// Returns the length of the direction vector
+ float Length() const;
+
+ /** Checks to see if the ray intersects a plane defined by a point and a normal.
+ If there was an intersection, true is returned, iTime is set to the intersection
+ time, and iPoint is set to the intersection point. The plane is considered
+ to be 1-sided. That is the intersection will only occur if the ray hits the
+ plane from its front side as determined by the plane's normal.
+ */
+ bool IntersectPlane(const Point3 &planePt, const Vector3 &planeNormal,
+ float *iTime, Point3 *iPoint) const;
+
+ /** Checks to see if the ray intersects a triangle defined by the vertices v1, v2, and v3.
+ The vertices must be provided in counter-clockwise order so that the normal of the
+ triangle can be determined via the right-hand rule. The intersection will only happen
+ if the ray hits the front side of the triangle. If there was an intersection,
+ true is returned, iTime is set to the intersection time, and iPoint is set to the intersection point.
+ */
+ bool IntersectTriangle(const Point3 &v1, const Point3 &v2, const Point3 &v3,
+ float *iTime, Point3 *iPoint) const;
+
+ /** Checks to see if the ray intersects a quad defined by the vertices v1, v2, v3, and v4.
+ The vertices must be provided in counter-clockwise order so that the normal of the
+ triangle can be determined via the right-hand rule. The intersection will only happen
+ if the ray hits the front side of the triangle. If there was an intersection,
+ true is returned, iTime is set to the intersection time, and iPoint is set to the intersection point.
+ */
+ bool IntersectQuad(const Point3 &v1, const Point3 &v2, const Point3 &v3, const Point3 &v4,
+ float *iTime, Point3 *iPoint) const;
+
+ /** Checks to see if the ray intersects a sphere defined by a center point and a radius.
+ If there was an intersection, true is returned, iTime is set to the intersection time,
+ and iPoint is set to the intersection point.
+ */
+ bool IntersectSphere(const Point3 ¢er, float radius,
+ float *iTime, Point3 *iPoint) const;
+
+ /** Checks to see if the ray intersects a triangle mesh. This is a brute-force
+ check over each triangle in the mesh. If there was an intersection, true is returned,
+ iTime is set to the intersection time, iPoint is set to the intersection point,
+ and iTriangleID is set to the ID of the closest intersected triangle along the ray.
+ */
+ bool IntersectMesh(const Mesh &mesh, float *iTime,
+ Point3 *iPoint, int *iTriangleID) const;
+
+ /** Checks to see if the ray intersects a triangle mesh. This uses a BVH
+ (Bounding Volume Hierarchy) to accelerate the ray-triangle intersection tests.
+ Each mesh can optionally store a BVH. If a BVH has already been calculated
+ for the mesh (done with Mesh::CalculateBVH()), then this function will be
+ much faster than the brute-force IntersectMesh() function. If a BVH has
+ not already been calculated for the mesh, the first call to FastIntersectMesh()
+ will trigger the mesh to create a BVH (not a fast operation) but then
+ subsequent calls to FastIntersectMesh() will be fast.
+ */
+ bool FastIntersectMesh(Mesh *mesh, float *iTime,
+ Point3 *iPoint, int *iTriangleID) const;
+
+ /** Checks to see if the ray intersects an AABB (Axis-Aligned Bounding Box).
+ Typically, this is the first step of a more detailed intersection test and
+ we don't care about the actual point of intersection, just whether it
+ intersects or not. So, we don't bother calculating the iPoint. We get the
+ iTime for free though, so we do return that. You can calc the iPoint if
+ you want using:
+ ~~~
+ float t;
+ if (ray.IntersectAABB(box, &t)) {
+ Point3 iPoint = ray.origin() + t*ray.direction();
+ }
+ ~~~
+ */
+ bool IntersectAABB(const AABB &box, float *iTime) const;
+
+ /// Returns the origin
+ Point3 origin() const;
+
+ /// Returns the direction
+ Vector3 direction() const;
+
+ /// Sets a new origin and direction
+ void set(Point3 newOrigin, Vector3 newDir);
+
+private:
+ Point3 p_;
+ Vector3 d_;
+};
+
+
+// --- Stream operators ---
+
+std::ostream & operator<< ( std::ostream &os, const Ray &r);
+std::istream & operator>> ( std::istream &is, Ray &r);
+
+
+} // end namespace
+
+#endif
|