
CSCI 4611: Programming Interactive Graphics and Games

Assignment 4: So You Think Ants Can Dance!

Handed out: Mar 9

Worksheet Due: Mar 14, 11:59pm
- With 1 week grace period: Mar 21, 11:59pm

Program Due: Mar 21, 11:59pm
- With 1 week grace period: Mar 28, 11:59pm

Introduction

Animated characters are an important part of computer games and other interactive
graphics. In this assignment you will learn how to animate computer graphics
characters using data from motion capture systems. You will be working with data from
the Carnegie Mellon motion capture database (http://mocap.cs.cmu.edu/), a great
resource of free “mocap” data. The data will be formatted as text files, but with your
programming and math skills, you will bring this data to life on the dance floor!

The CMU motion capture data is typical of all the skeleton-based motion capture data
you’ll find in today’s games and movies. So, gaining some experience with this type of
animation is one of the most important goals of the assignment. There are several
important learning goals.

http://mocap.cs.cmu.edu/

Learning Goals:

In completing this assignment, your goal should be to learn:

• How transformations can be composed in a hierarchy to create a scene graph

and/or, in this case, an animated character within a scene.

• How transformations can be used to scale, rotate, and translate basic shapes
(unit cubes, spheres, cylinders, and cones) into more complex scenes and
characters (e.g., an ant!).

• How mocap data can be used and manipulated in multiple ways to create
different types of animations. For example:

o How to create a looping animation that smoothly interpolates between the
beginning of the motion clip and the end to avoid any discontinuities.

o How to overlay new motion clips onto a character at runtime, for example,
in a game making your character punch or kick when you press a button,
or in our case, perform one of a series of cool ballet moves.

• How to read and extend some fairly sophisticated C++ computer graphics code.

The amount of code you will need to write to complete this assignment is less than in
the previous assignments. The support code provides quite a bit of infrastructure to
deal with reading and playing back the mocap data. So, the key challenges will come in
reading through and understanding the existing code as well as really thinking about the
code that you do write. You will probably need to work out some of the math on paper
before sitting down at the keyboard to program.

Worksheet

The worksheet is located in the class support code at worksheets/a4_dance.md.

Please follow the instructions in the Software Tutorial in order to pull the latest support
code. Edit a4_dance.md and commit/push it to turn the worksheet in.
Remember to also commit the images that you create for Question 1! To check that
your submission is formatted the way you want it to be, you can open the markdown file
in your GitHub repository online.

Background on CMU Mocap Data

The CMU Mocap database contains 2,605 different motions, most recorded at 120Hz,
but some recorded at 60Hz or other speeds. These motions range from the simple
(person walking straight forward), to the complicated (directing traffic), to the silly
(someone doing the “I’m a little teapot” dance).

The motions in the CMU database use skeletons specified in .asf files and separate
motions specified in .amc files. The .asf files specify bone names, directions, lengths,
and the skeleton hierarchy for one specific human subject who came to the mocap lab.
That person likely performed several motions during the capture session, so there is

https://canvas.umn.edu/courses/217742/pages/software-tutorial-setup-for-assignment-1

typically a 1 asf file to many amc files relationship. The subjects are numbered (e.g.,

subject #50) and the skeleton files are named accordingly (e.g., “50.asf”). Motion files
names start with the subject ID, then have an underscore, then the number of the
motion (e.g., “50_01.amc” is the first motion captured for subject 50). The support code
comes with the data files we used in our solution to the assignment, but it can be fun to
swap in other motions from the CMU database, and you are encouraged to experiment
with this by downloading other asf and corresponding amc files from
http://mocap.cs.cmu.edu/.

The amc and asf files are actually from the Acclaim Motion Capture data format, and if
you are interested, you can read more about the details of the format here:
http://graphics.cs.cmu.edu/nsp/course/cs229/info/ACCLAIMdef.html

Requirements and Grading Rubric

Working from the support code, which is significant for this assignment, you will be
required to write the code to meet the following specs:

1. Draw one (or more) animated characters that perform a motion in a continuous
loop. The support code starts you down this path by loading mocap data for the
male and female parts of a salsa dance.

2. Draw one (or more) animated characters that loop through a small motion clip
when “at rest” and seamlessly transition to perform new motions when the
“Motion 1”, “Motion 2”, …, “Motion 5” buttons are clicked, similar to how a
character in a game would jump or punch or kick whenever you press a button
on your controller.

3. We suggesting starting #1 and #2 with a very simple character, like a stick figure,
the final requirement is to make this character more interesting. Use
transformation matrices to construct a more interesting character out of scaled
spheres, cubes, cones, cylinders, or other simple shapes you can draw with the
QuickShapes class.

To accomplish these tasks, you will need to add code to the places marked TODO in
the AnimatedCharacter class and in the DanceApp class. You will probably not need to
add any new classes to the project in this assignment.

Work in the “C” range will:

Focus on three tasks within the DrawBonesRecursive() function in
animated_character.cc:

• Extend the AnimatedCharacter::DrawBonesRecursive() function to define the
correct “current transformation matrix” to use for drawing each bone.

• Correctly set the “child_root_transform” before the recursive call at the end of the
function in order to draw all of the bones in the skeleton.

http://mocap.cs.cmu.edu/
http://graphics.cs.cmu.edu/nsp/course/cs229/info/ACCLAIMdef.html

If you do these things, then you should be rewarded by seeing a pair a figures with a

coordinate frame drawn at each joint of their bodies dancing the salsa!

Work in the “B” range will:

Continue extending DrawBonesRecursive():

• Draw at least a stick figure (e.g., line segment or cylinder) representation for the
each bone so that your dancing coordinate frames now turn into a dancing stick
figure.

Create good motion clips for the ballet-dancing ant inside dance_app.cc:

• Follow the pattern demonstrated with the “ballet_special1_” example to define 4
additional special motions, load the motion clips from amc files, trim and
uninteresting frames from the front and back of the clips, and then play them
when the “Motion X” buttons in the GUI are pressed.

• Visually verify that the motion smoothly transitions from the ballet dancer’s base
loop motion into all of these special motions whenever a new motion is played.

If you do these things, then you should be rewarded by seeing a pair a stick figures
dancing the salsa on the right hand side of the screen and an interactive stick figure
that you can control on the left side of the screen.

Work in the “A” range will:

Return to the AnimatedCharacter::DrawBonesRecursive() function and extend it to
draw an ant (or some other interesting character) rather than just a stick figure.

• Use QuickShapes to draw simple geometries like spheres, cubes, cylinders,
cones, etc.

• Use transformation matrices (Matrix4s) to apply scales, translations, and
rotations to the model matrix you use to draw each shape in order for it to create
an interesting looking character. For example, notice how the “butts” of the ants
that we have created are drawn using spheres that are scaled to create ellipsoids
and then rotated by about 45 degrees. When this shape is drawn with the
transformation matrix for the lower back “bone”, it makes a pretty good ant.

• Adjust colors and use several geometries to make a convincing character. You
are free to make the same ant character that we did, but you can also create
your own character, just make sure that your character includes a few examples
of applying transformation matrices before drawing simple shapes so that we can
be sure that you have learned that skill.

Useful Math

Refer to the notes in class in the next couple of weeks. We will be talking about
rendering hierarchical models and about blending poses together via linear interpolation
and how to interpolate angles smoothly.

Above and Beyond

All the assignments in the course will include great opportunities for students to go

beyond the requirements of the assignment and do cool extra work. We don’t offer any
extra credit for this work — if you’re going beyond the assignment, then chances are
you are already kicking butt in the class. However, we do offer a chance to show off…
While grading the assignments the TAs will identify the best 4 or 5 examples of people
doing cool stuff with computer graphics. After each assignment, the selected students
will get a chance to demonstrate their programs to the class!

There are great opportunities for extra work in this assignment. You can add more
characters or change the characters and put them in a different scene. You can also
pick different motion clips to use from the CMU database. All of these can lead to
interesting wizardly aesthetical changes! For the more technically inclined wizards, you
might consider turning the ballet character into a character that can be controlled with
the mouse and keyboard rather than just buttons on the screen. And/or, try to make a
character than can walk around the screen using mocap data but rather than following a
pre-defined path, make it go wherever you command it with keyboard or mouse input.
This is what you find in many computer games, and you will have the knowledge to do
this at the end of this assignment.

Support Code

As in past assignments, you will need to download the support code for assignment 4.

This can be done with the following commands:

cd repo-[your x500]

git pull upstream support-code

You should now see a4-dance and a4-dance-docs in your repo-[your x500]/dev
directory.

Handing It In

As always, include a README file that describes the completed portions of the rubric
for this assignment. Be sure to include details of any standing bugs or wizard-work.

To hand in your code, follow the instructions in our Tech Help Center. Make sure you
have all files that are necessary to run your project committed to GitHub!

Remember, you can check this easily by download your tagged commit from GitHub
and building you project.

Any commits past the deadline will be assessed according to the late penalties
described in the syllabus, and submissions with missing files will be assessed an
immediate 10% deduction.

https://canvas.umn.edu/courses/217742/pages/how-to-submit-worksheets-and-programming-assignments-to-our-grading-queue

