1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/*
Copyright (c) 2017,2018 Regents of the University of Minnesota.
All Rights Reserved.
See corresponding header file for details.
*/
#define _USE_MATH_DEFINES
#include "quaternion.h"
#include "gfxmath.h"
namespace mingfx {
Quaternion::Quaternion() {
q[0] = 0.0;
q[1] = 0.0;
q[2] = 0.0;
q[3] = 1.0;
}
Quaternion::Quaternion(float qx, float qy, float qz, float qw) {
q[0] = qx;
q[1] = qy;
q[2] = qz;
q[3] = qw;
}
Quaternion::Quaternion(float *ptr) {
q[0] = ptr[0];
q[1] = ptr[1];
q[2] = ptr[2];
q[3] = ptr[3];
}
Quaternion::Quaternion(const Quaternion& other) {
q[0] = other[0];
q[1] = other[1];
q[2] = other[2];
q[3] = other[3];
}
Quaternion::~Quaternion() {
}
bool Quaternion::operator==(const Quaternion& other) const {
return (fabs(other[0] - q[0]) < MINGFX_MATH_EPSILON &&
fabs(other[1] - q[1]) < MINGFX_MATH_EPSILON &&
fabs(other[2] - q[2]) < MINGFX_MATH_EPSILON &&
fabs(other[3] - q[3]) < MINGFX_MATH_EPSILON);
}
bool Quaternion::operator!=(const Quaternion& other) const {
return (fabs(other[0] - q[0]) >= MINGFX_MATH_EPSILON ||
fabs(other[1] - q[1]) >= MINGFX_MATH_EPSILON ||
fabs(other[2] - q[2]) >= MINGFX_MATH_EPSILON ||
fabs(other[3] - q[3]) >= MINGFX_MATH_EPSILON);
}
Quaternion& Quaternion::operator=(const Quaternion& other) {
q[0] = other[0];
q[1] = other[1];
q[2] = other[2];
q[3] = other[3];
return *this;
}
float Quaternion::operator[](const int i) const {
if ((i>=0) && (i<=3)) {
return q[i];
}
else {
// this is an error!
return 0.0;
}
}
float& Quaternion::operator[](const int i) {
return q[i];
}
const float * Quaternion::value_ptr() const {
return q;
}
Quaternion Quaternion::Slerp(const Quaternion &other, float alpha) const {
// https://en.wikipedia.org/wiki/Slerp
Quaternion v0 = *this;
Quaternion v1 = other;
// Only unit quaternions are valid rotations.
// Normalize to avoid undefined behavior.
v0.Normalize();
v1.Normalize();
// Compute the cosine of the angle between the two vectors.
float dot = v0.Dot(v1);
// If the dot product is negative, the quaternions
// have opposite handed-ness and slerp won't take
// the shorter path. Fix by reversing one quaternion.
if (dot < 0.0f) {
v1 = -v1;
dot = -dot;
}
const double DOT_THRESHOLD = 0.9995;
if (dot > DOT_THRESHOLD) {
// If the inputs are too close for comfort, linearly interpolate
// and normalize the result.
Quaternion result = v0 + alpha*(v1 - v0);
result.Normalize();
return result;
}
GfxMath::Clamp(dot, -1, 1); // Robustness: Stay within domain of acos()
float theta_0 = acos(dot); // theta_0 = angle between input vectors
float theta = theta_0 * alpha; // theta = angle between v0 and result
float s0 = cos(theta) - dot * sin(theta) / sin(theta_0); // == sin(theta_0 - theta) / sin(theta_0)
float s1 = sin(theta) / sin(theta_0);
return (s0 * v0) + (s1 * v1);
}
Quaternion Quaternion::Slerp(const Quaternion &a, const Quaternion &b, float alpha) {
return a.Slerp(b, alpha);
}
std::ostream & operator<< ( std::ostream &os, const Quaternion &q) {
return os << "<" << q[0] << ", " << q[1] << ", " << q[2] << ", " << q[3] << ")";
}
std::istream & operator>> ( std::istream &is, Quaternion &q) {
// format: <qx, qy, qz, qw>
char dummy;
return is >> dummy >> q[0] >> dummy >> q[1] >> dummy >> q[2] >> dummy >> q[3] >> dummy;
}
float Quaternion::Dot(const Quaternion& other) const {
return q[0]*other[0] + q[1]*other[1] + q[2]*other[2] + q[3]*other[3];
}
float Quaternion::Length() const {
return sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
}
void Quaternion::Normalize() {
float sizeSq = + q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
if (sizeSq < MINGFX_MATH_EPSILON) {
return; // do nothing to zero quats
}
float scaleFactor = (float)1.0/(float)sqrt(sizeSq);
q[0] *= scaleFactor;
q[1] *= scaleFactor;
q[2] *= scaleFactor;
q[3] *= scaleFactor;
}
Quaternion Quaternion::ToUnit() const {
Quaternion qtmp(*this);
qtmp.Normalize();
return qtmp;
}
/// Returns the conjugate of the quaternion.
Quaternion Quaternion::Conjugate() const {
return Quaternion(-q[0], -q[1], -q[2], q[3]);
}
Quaternion Quaternion::FromAxisAngle(const Vector3 &axis, float angle) {
// [qx, qy, qz, qw] = [sin(a/2) * vx, sin(a/2)* vy, sin(a/2) * vz, cos(a/2)]
float x = sin(angle/2.0f) * axis[0];
float y = sin(angle/2.0f) * axis[1];
float z = sin(angle/2.0f) * axis[2];
float w = cos(angle/2.0f);
return Quaternion(x,y,z,w);
}
Quaternion Quaternion::FromEulerAnglesZYX(const Vector3 &angles) {
Quaternion rot_x = Quaternion::FromAxisAngle(Vector3::UnitX(), angles[0]);
Quaternion rot_y = Quaternion::FromAxisAngle(Vector3::UnitY(), angles[1]);
Quaternion rot_z = Quaternion::FromAxisAngle(Vector3::UnitZ(), angles[2]);
return rot_z * rot_y * rot_x;
}
Vector3 Quaternion::ToEulerAnglesZYX() const {
// https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
Vector3 angles;
// roll (x-axis rotation)
float sinr = +2.0f * (w() * x() + y() * z());
float cosr = +1.0f - 2.0f * (x() * x() + y() * y());
angles[0] = std::atan2(sinr, cosr);
// pitch (y-axis rotation)
float sinp = +2.0f * (w() * y() - z() * x());
if (std::fabs(sinp) >= 1.f)
angles[1] = std::copysign(GfxMath::HALF_PI, sinp); // use 90 degrees if out of range
else
angles[1] = std::asin(sinp);
// yaw (z-axis rotation)
float siny = +2.0f * (w() * z() + x() * y());
float cosy = +1.0f - 2.0f * (y() * y() + z() * z());
angles[2] = std::atan2(siny, cosy);
return angles;
}
Quaternion operator*(const Quaternion& q1, const Quaternion& q2) {
float real1 = q1[3];
Vector3 imag1 = Vector3(q1[0], q1[1], q1[2]);
float real2 = q2[3];
Vector3 imag2 = Vector3(q2[0], q2[1], q2[2]);
float real = real1*real2 - imag1.Dot(imag2);
Vector3 imag = real1*imag2 + real2*imag1 + imag1.Cross(imag2);
return Quaternion(imag[0], imag[1], imag[2], real);
}
Quaternion operator/(const Quaternion& q, const float s) {
const float invS = 1.0f / s;
return Quaternion(q[0]*invS, q[1]*invS, q[2]*invS, q[3]*invS);
}
Quaternion operator*(const float s, const Quaternion& q) {
return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
}
Quaternion operator*(const Quaternion& q, const float s) {
return Quaternion(q[0]*s, q[1]*s, q[2]*s, q[3]*s);
}
Quaternion operator-(const Quaternion& q) {
return Quaternion(-q[0], -q[1], -q[2], -q[3]);
}
Quaternion operator+(const Quaternion& q1, const Quaternion& q2) {
return Quaternion(q1[0] + q2[0], q1[1] + q2[1], q1[2] + q2[2], q1[3] + q2[3]);
}
Quaternion operator-(const Quaternion& q1, const Quaternion& q2) {
return Quaternion(q1[0] - q2[0], q1[1] - q2[1], q1[2] - q2[2], q1[3] - q2[3]);
}
} // end namespace
|