aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--System_Python/system.py43
1 files changed, 26 insertions, 17 deletions
diff --git a/System_Python/system.py b/System_Python/system.py
index 469f475..078c1f9 100644
--- a/System_Python/system.py
+++ b/System_Python/system.py
@@ -18,7 +18,7 @@ encoder_data_pin = 3
### Angular encoder pins
encoder_angular_cs_pin = 4
### Linear encoder pins
-encoder_linear_cs_pin = 5
+encoder_linear_cs_pin = 14
### Limit switch pins (configured to PULLUP)
limit_negative_pin = 19
limit_positive_pin = 26
@@ -71,21 +71,33 @@ class System:
# Begin moving slowly in the negative direction until the negative limit switch is triggered
if not GPIO.input(limit_negative_pin) == False:
self.motor.move(-1)
- GPIO.wait_for_edge(limit_negative_pin, GPIO.FALLING)
+ pressed = True
+ while pressed != False:
+ pressed = GPIO.input(limit_negative_pin)
+ sleep(0.01)
self.motor.brake()
# Set zero at the negative end of the track for easy reference in determining the extent
self.encoder_linear.set_zero()
+ sleep(1)
# Begin moving slowly in the positive direction until the positive limit switch is triggered
self.motor.move(1)
- GPIO.wait_for_edge(limit_positive_pin, GPIO.FALLING)
+ pressed = True
+ while pressed != False:
+ # We must continue reading linear encoder motion to keep track of rotations
+ self.encoder_linear.read_position()
+ pressed = GPIO.input(limit_positive_pin)
+ sleep(0.01)
+ #GPIO.wait_for_edge(limit_positive_pin, GPIO.FALLING)
self.motor.brake()
# Get the current position (the extent of the track)
extent = self.encoder_linear.read_position()
# Move back towards the center until we reach position extent/2
position = extent
+ sleep(1)
self.motor.move(-1)
- while not position == extent / 2:
+ while position >= (extent / 2.):
position = self.encoder_linear.read_position()
+ sleep(0.01)
self.motor.brake()
# Set zero again: this is the real zero
self.encoder_linear.set_zero()
@@ -205,23 +217,20 @@ class Linear_Encoder:
# Set the zero position for the encoder
self.encoder.set_zero()
# Reset the internal position counter
- self.rotations = 0
- self.last_position = 0
+ self.rotations = 0.
+ self.last_position = 0.
def read_position(self):
- # Read the position of the encoder
- position = self.encoder.read_position('Raw')
+ # Read the position of the encoder (apply a noise filter, we don't need that much precision here)
+ position = float(self.encoder.read_position('Raw') & 0b1111111100)
# Compare to last known position
# NOTE: For now, assume that we are moving the smallest possible distance (i.e. 5 -> 1 is -4, not 1020)
- if position - self.last_position > 0:
- if position < 512 and self.last_position > 512:
- # We are moving to the right (positive) and have completed a new rotation
- self.rotations = self.rotations + 1
- else:
- if position > 512 and self.last_position < 512:
- # We are moving to the left (negative) and have completed a new rotation
- self.rotations = self.rotations - 1
+ if (position - self.last_position) > 768.:
+ self.rotations = self.rotations - 1.
+ elif (position - self.last_position) < -768.:
+ self.rotations = self.rotations + 1.
+
# Save the last position for the next calculation
self.last_position = position
# compute the position based on the system parameters
# linear position = (2pi*r)(n) + (2pi*r)(position/1024) = (2pi*r)(n + position/1024) = (pi*d)(n + position/1024)
- return (self.PROPORTION)*(self.rotations + position/1024)
+ return (self.PROPORTION)*(self.rotations + position/1024.)