1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
import numpy as np
import numpy.random as rnd
import torch as pt
import math
from gym import spaces, logger
from gym.utils import seeding
from system import System
import time
class SwingUpEnv():
"""
Description:
A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pendulum starts upright, and the goal is to prevent it from falling over by increasing and reducing the cart's velocity.
Source:
This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson
Observation:
Type: Box(4)
Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle -Inf Inf
3 Pole Velocity At Tip -Inf Inf
Actions:
Type: Box(1)
Num Action Min Max
0 Push cart -1 1
Note: The amount the velocity that is reduced or increased is not fixed; it depends on the angle the pole is pointing. This is because the center of gravity of the pole increases the amount of energy needed to move the cart underneath it
Reward:
Reward is 1 for every step taken, including the termination step
Starting State:
All observations are assigned a uniform random value in [-0.05..0.05]
Episode Termination:
Pole Angle is more than 12 degrees
Cart Position is more than 2.4 (center of the cart reaches the edge of the display)
Episode length is greater than 200
Solved Requirements
Considered solved when the average reward is greater than or equal to 195.0 over 100 consecutive trials.
"""
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
self.sys = System(angular_units='Radians')
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
# Angle at which to fail the episode
self.x_threshold = 10.
self.x_dot_threshold = 10.
self.theta_dot_threshold = 3*np.pi
# Angle limit set to 2 * theta_threshold_radians so failing observation is still within bounds
high = np.array([self.x_threshold*2, self.x_dot_threshold, np.finfo(np.float32).max, np.finfo(np.float32).max])
self.action_space = spaces.Box(-np.ones(1), np.ones(1), dtype = np.float32)
self.seed()
self.state = None
self.steps_beyond_done = None
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def step(self, action):
assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
force = self.force_mag * action[0]
self.sys.adjust(force)
costheta = math.cos(theta)
sintheta = math.sin(theta)
if costheta > 0:
self.up_time += 1
self.max_up_time = np.max([self.up_time, self.max_up_time])
else:
self.up_time = 0
new_theta, new_x = self.sys.measure()
theta_dot = (new_theta - theta) / self.tau
x_dot = (new_x - x) / self.tau
self.state = (new_x, x_dot, new_theta, theta_dot)
self.sys.add_results(new_theta, new_x, force)
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta_dot < -self.theta_dot_threshold \
or theta_dot > self.theta_dot_threshold
done = bool(done)
if not done:
reward = np.ceil(costheta)
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = -( 100 * (np.abs(x_dot) + np.abs(theta_dot)) )
else:
if self.steps_beyond_done == 0:
logger.warn("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0.0
return np.array(self.state), reward, done, {'max_up_time' : self.max_up_time}
def reset(self):
self.sys.return_home()
time.sleep(1)
self.state = (0, 0, np.pi, 0)
self.up_time = 0
self.max_up_time = 0
self.up = False
self.steps_beyond_done = None
return np.array(self.state)
class nnQ(pt.nn.Module):
"""
Here is a basic neural network with for representing a policy
"""
def __init__(self, stateDim, numActions, numHiddenUnits, numLayers):
super().__init__()
InputLayer = [pt.nn.Linear(stateDim + numActions, numHiddenUnits),
pt.nn.ReLU()]
HiddenLayers = []
for _ in range(numLayers - 1):
HiddenLayers.append(pt.nn.Linear(numHiddenUnits, numHiddenUnits))
HiddenLayers.append(pt.nn.ReLU())
OutputLayer = [pt.nn.Linear(numHiddenUnits, 1)]
AllLayers = InputLayer + HiddenLayers + OutputLayer
self.net = pt.nn.Sequential(*AllLayers)
self.numActions = numActions
def forward(self,x,a):
x = pt.tensor(x, dtype = pt.float32)
b = pt.nn.functional.one_hot(pt.tensor(a).long(), self.numActions)
c = b.float().detach()
y = pt.cat([x, c])
return self.net(y)
class sarsaAgent:
def __init__(self, stateDim, numActions, numHiddenUnits, numLayers,
epsilon = .1, gamma = .9, alpha = .1):
self.Q = nnQ(stateDim, numActions, numHiddenUnits, numLayers)
self.gamma = gamma
self.epsilon = epsilon
self.alpha = alpha
self.numActions = numActions
self.s_last = None
def action(self, x):
# This is an epsilon greedy selection
a = 0
if rnd.rand() < self.epsilon:
a = rnd.randint(numActions)
else:
qBest = -np.inf
for aTest in range(self.numActions):
qTest = self.Q(x, aTest).detach().numpy()[0]
if qTest > qBest:
qBest = qTest
a = aTest
return a
def update(self, s, a, r, s_next,done):
# Compute the TD error, if there is enough data
update = True
if done:
Q_cur = self.Q(s, a).detach().numpy()[0]
delta = r - Q_cur
self.s_last = None
Q_diff = self.Q(s, a)
elif self.s_last is not None:
Q_next = self.Q(s, a).detach().numpy()[0]
Q_cur = self.Q(self.s_last, self.a_last).detach().numpy()[0]
delta = self.r_last + self.gamma * Q_next - Q_cur
Q_diff = self.Q(self.s_last, self.a_last)
else:
update = False
# Update the parameter via the semi-gradient method
if update:
self.Q.zero_grad()
Q_diff.backward()
for p in self.Q.parameters():
p.data.add_(self.alpha * delta, p.grad.data)
if not done:
self.s_last = np.copy(s)
self.a_last = np.copy(a)
self.r_last = np.copy(r)
# This is the environment
env = SwingUpEnv()
# For simplicity, we only consider forces of -1 and 1
numActions = 2
Actions = np.linspace(-1, 1, numActions)
# This is our learning agent
gamma = .95
agent = sarsaAgent(5, numActions, 20, 1, epsilon = 5e-2, gamma = gamma, alpha = 1e-5)
maxSteps = 2e5
# This is a helper to deal with the fact that x[2] is actually an angle
x_to_y = lambda x : np.array([x[0], x[1], np.cos(x[2]), np.sin(x[2]), x[3]])
R = []
UpTime = []
step = 0
ep = 0
while step < maxSteps:
ep += 1
x = env.reset()
C = 0.
done = False
t = 1
while not done:
t += 1
step += 1
y = x_to_y(x)
a = agent.action(y)
u = Actions[a:a+1]
x_next, c, done, info = env.step(u)
max_up_time = info['max_up_time']
y_next = x_to_y(x_next)
C += (1./t) * (c - C)
agent.update(y, a, c, y_next, done)
x = x_next
if done:
break
if step >= maxSteps:
break
R.append(C)
UpTime.append(max_up_time)
#print('t:',ep+1,', R:',C,', L:',t-1,', G:',G,', Q:', Q_est, 'U:', max_up_time)
print('Episode:',ep, 'Total Steps:',step, ', Ave. Reward:',C, ', Episode Length:',t-1, 'Max Up-Time:',max_up_time)
env.close()
|