diff options
Diffstat (limited to 'csci4511w/colab/HW5 - Neural Networks/test_cases.py')
-rw-r--r-- | csci4511w/colab/HW5 - Neural Networks/test_cases.py | 119 |
1 files changed, 0 insertions, 119 deletions
diff --git a/csci4511w/colab/HW5 - Neural Networks/test_cases.py b/csci4511w/colab/HW5 - Neural Networks/test_cases.py deleted file mode 100644 index ebd8ca1..0000000 --- a/csci4511w/colab/HW5 - Neural Networks/test_cases.py +++ /dev/null @@ -1,119 +0,0 @@ -import numpy as np - -def layer_sizes_test_case(): - np.random.seed(1) - X_assess = np.random.randn(5, 3) - Y_assess = np.random.randn(2, 3) - return X_assess, Y_assess - -def initialize_parameters_test_case(): - n_x, n_h, n_y = 2, 4, 1 - return n_x, n_h, n_y - - -def forward_propagation_test_case(): - np.random.seed(1) - X_assess = np.random.randn(2, 3) - b1 = np.random.randn(4,1) - b2 = np.array([[ -1.3]]) - - parameters = {'W1': np.array([[-0.00416758, -0.00056267], - [-0.02136196, 0.01640271], - [-0.01793436, -0.00841747], - [ 0.00502881, -0.01245288]]), - 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), - 'b1': b1, - 'b2': b2} - - return X_assess, parameters - -def compute_cost_test_case(): - np.random.seed(1) - Y_assess = (np.random.randn(1, 3) > 0) - parameters = {'W1': np.array([[-0.00416758, -0.00056267], - [-0.02136196, 0.01640271], - [-0.01793436, -0.00841747], - [ 0.00502881, -0.01245288]]), - 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), - 'b1': np.array([[ 0.], - [ 0.], - [ 0.], - [ 0.]]), - 'b2': np.array([[ 0.]])} - - a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]])) - - return a2, Y_assess, parameters - -def backward_propagation_test_case(): - np.random.seed(1) - X_assess = np.random.randn(2, 3) - Y_assess = (np.random.randn(1, 3) > 0) - parameters = {'W1': np.array([[-0.00416758, -0.00056267], - [-0.02136196, 0.01640271], - [-0.01793436, -0.00841747], - [ 0.00502881, -0.01245288]]), - 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]), - 'b1': np.array([[ 0.], - [ 0.], - [ 0.], - [ 0.]]), - 'b2': np.array([[ 0.]])} - - cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619], - [-0.05225116, 0.02725659, -0.02646251], - [-0.02009721, 0.0036869 , 0.02883756], - [ 0.02152675, -0.01385234, 0.02599885]]), - 'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]), - 'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ], - [-0.05229879, 0.02726335, -0.02646869], - [-0.02009991, 0.00368692, 0.02884556], - [ 0.02153007, -0.01385322, 0.02600471]]), - 'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])} - return parameters, cache, X_assess, Y_assess - -def update_parameters_test_case(): - parameters = {'W1': np.array([[-0.00615039, 0.0169021 ], - [-0.02311792, 0.03137121], - [-0.0169217 , -0.01752545], - [ 0.00935436, -0.05018221]]), - 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]), - 'b1': np.array([[ -8.97523455e-07], - [ 8.15562092e-06], - [ 6.04810633e-07], - [ -2.54560700e-06]]), - 'b2': np.array([[ 9.14954378e-05]])} - - grads = {'dW1': np.array([[ 0.00023322, -0.00205423], - [ 0.00082222, -0.00700776], - [-0.00031831, 0.0028636 ], - [-0.00092857, 0.00809933]]), - 'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03, - -2.55715317e-03]]), - 'db1': np.array([[ 1.05570087e-07], - [ -3.81814487e-06], - [ -1.90155145e-07], - [ 5.46467802e-07]]), - 'db2': np.array([[ -1.08923140e-05]])} - return parameters, grads - -def nn_model_test_case(): - np.random.seed(1) - X_assess = np.random.randn(2, 3) - Y_assess = (np.random.randn(1, 3) > 0) - return X_assess, Y_assess - -def predict_test_case(): - np.random.seed(1) - X_assess = np.random.randn(2, 3) - parameters = {'W1': np.array([[-0.00615039, 0.0169021 ], - [-0.02311792, 0.03137121], - [-0.0169217 , -0.01752545], - [ 0.00935436, -0.05018221]]), - 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]), - 'b1': np.array([[ -8.97523455e-07], - [ 8.15562092e-06], - [ 6.04810633e-07], - [ -2.54560700e-06]]), - 'b2': np.array([[ 9.14954378e-05]])} - return parameters, X_assess |