diff options
author | Matt Strapp <strap012@umn.edu> | 2021-04-26 17:12:01 -0500 |
---|---|---|
committer | Matt Strapp <strap012@umn.edu> | 2021-04-26 17:12:01 -0500 |
commit | a093060b0e8a787e51212b5f2879dc839605da65 (patch) | |
tree | 7ec2d69219d41ae6447efc41ebaaac34c696984b /dotsandboxes/agents/algorithms/ann.py | |
parent | Refactor jsut about everything (diff) | |
download | csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar.gz csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar.bz2 csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar.lz csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar.xz csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.tar.zst csci4511w-a093060b0e8a787e51212b5f2879dc839605da65.zip |
Revert "Refactor jsut about everything"
This reverts commit e58a60ed18bde5db28ba96910df518a61b3999b2.
Diffstat (limited to 'dotsandboxes/agents/algorithms/ann.py')
-rw-r--r-- | dotsandboxes/agents/algorithms/ann.py | 170 |
1 files changed, 0 insertions, 170 deletions
diff --git a/dotsandboxes/agents/algorithms/ann.py b/dotsandboxes/agents/algorithms/ann.py deleted file mode 100644 index 05ae647..0000000 --- a/dotsandboxes/agents/algorithms/ann.py +++ /dev/null @@ -1,170 +0,0 @@ -from numpy import * -from math import sqrt -from copy import deepcopy -from time import time - -class ANN: - - """ANN with one hidden layer, one output and full connections in between consecutive layers. - Initial weights are chosen from a normal distribution. - Activation function is tanh.""" - - INIT_SIGMA = 0.02 - REL_STOP_MARGIN = 0.01 - MAX_ITERATIONS = 1000000 - ACTIVATION = tanh - D_ACTIVATION = lambda x: 1 - tanh(x)**2 # Derivative of tanh - VEC_ACTIVATION = vectorize(ACTIVATION) - VEC_D_ACTIVATION = vectorize(D_ACTIVATION) - STEP_SIZE = 0.1 - - def __init__(self, input_size, hidden_size): - - #self.input_size = input_size - #self.hidden_size = hidden_size - self.hidden_weights = random.normal(0, ANN.INIT_SIGMA, (hidden_size, input_size)) - self.output_weights = random.normal(0, ANN.INIT_SIGMA, hidden_size) - - def get_weights(self): - return self.hidden_weights, self.output_weights - - def predict(self, input_vector): - - # Predicts the output for this input vector - # input_vector will be normalized - - input_vector = input_vector/linalg.norm(input_vector) - return ANN.ACTIVATION(dot(self.output_weights, ANN.VEC_ACTIVATION(dot(self.hidden_weights, input_vector)))) - - @staticmethod - def frob_norm(a, b): - - # Calculates the total Frobenius norm of both matrices A and B - return sqrt(linalg.norm(a)**2 + linalg.norm(b)**2) - - def train(self, examples): - - #print("Training") - start = time() - - # examples is a list of (input, output)-tuples - # input will be normalized - # We stop when the weights have converged within some relative margin - - for example in examples: - example[0] = example[0]/linalg.norm(example[0]) - - iteration = 0 - while True: - - - # Store old weights to check for convergence later - prev_hidden_weights = deepcopy(self.hidden_weights) - prev_output_weights = deepcopy(self.output_weights) - - for k in range(len(examples)): - - input_vector, output = examples[k] - - # Calculate outputs - hidden_input = dot(self.hidden_weights, input_vector) - hidden_output = ANN.VEC_ACTIVATION(hidden_input) - final_input = dot(self.output_weights, hidden_output) - predicted_output = ANN.ACTIVATION(final_input) - - #print("Output:", output) - #print("Predicted output:", predicted_output) - - # Used in calculations - prediction_error = output - predicted_output - output_derivative = ANN.D_ACTIVATION(final_input) - - # Adjust output weights and calculate requested hidden change - requested_hidden_change = prediction_error*output_derivative*self.output_weights - self.output_weights = self.output_weights + ANN.STEP_SIZE*prediction_error*hidden_output - - #print("After adjusting output weights:", ANN.ACTIVATION(dot(self.output_weights, hidden_output))) - - # Backpropagate requested hidden change to adjust hidden weights - self.hidden_weights = self.hidden_weights + ANN.STEP_SIZE*outer(requested_hidden_change*(ANN.VEC_D_ACTIVATION(hidden_input)), input_vector) - - #print("After adjusting hidden weights:", ANN.ACTIVATION(dot(self.output_weights, ANN.VEC_ACTIVATION(dot(self.hidden_weights, input_vector))))) - - # Check stop criteria - iteration += 1 - if iteration >= ANN.MAX_ITERATIONS: - break - - # Check stop criteria - if iteration >= ANN.MAX_ITERATIONS: - break - diff = ANN.frob_norm(self.hidden_weights - prev_hidden_weights, self.output_weights - prev_output_weights) - base = ANN.frob_norm(self.hidden_weights, self.output_weights) - #if base > 0 and diff/base < ANN.REL_STOP_MARGIN: - # break - - print(time() - start) - print("Stopped training after %s iterations."%iteration) - -# TESTING - -def print_difference(ann1, ann2): - - # Prints the differences in weights in between two ANN's with identical topology - - hidden_weights1, output_weights1 = ann1.get_weights() - hidden_weights2, output_weights2 = ann2.get_weights() - hidden_diff = hidden_weights1 - hidden_weights2 - output_diff = output_weights1 - output_weights2 - - print(hidden_diff) - print(output_diff) - print("Frobenius norms:") - print("Hidden weights difference:", linalg.norm(hidden_diff)) - print("Output weights difference:", linalg.norm(output_diff)) - print("Both:", ANN.frob_norm(hidden_diff, output_diff)) - -def RMSE(ann, examples): - - total = 0 - for input_vector, output in examples: - total += (output - ann.predict(input_vector))**2 - return sqrt(total/len(examples)) - -def generate_examples(amount, input_size, evaluate): - # evaluate is a function mapping an input vector onto a numerical value - examples = [] - inputs = random.normal(0, 100, (amount, input_size)) - for i in range(amount): - input_vector = inputs[i] - examples.append([input_vector, evaluate(input_vector)]) - return examples - -def test(): - - # Test the ANN by having it model another ANN with identical topology but unknown weights - - input_size = 5 - hidden_size = 3 - real = ANN(input_size, hidden_size) - model = ANN(input_size, hidden_size) - - # Generate training data - training_data = generate_examples(10000, input_size, real.predict) - validation_data = generate_examples(10000, input_size, real.predict) - - # Print initial difference, train, then print new difference - print("Initial difference:") - print_difference(real, model) - print("Initial RMSE (on training data):", RMSE(model, training_data)) - print("Initial RMSE (on validation data):", RMSE(model, validation_data)) - model.train(training_data) - print("After training:") - print_difference(real, model) - print("After training RMSE (on training data):", RMSE(model, training_data)) - print("After training RMSE (on validation data):", RMSE(model, validation_data)) - -if __name__ == "__main__": - test() - - |