aboutsummaryrefslogtreecommitdiffstats
path: root/dev/MinGfx/src/gfxmath.cc
blob: 28cfedf61ca5cd05857df3db94fdf5c9378615f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
 Copyright (c) 2017,2018 Regents of the University of Minnesota.
 All Rights Reserved.
 See corresponding header file for details.
 */

#include "gfxmath.h"

#define _USE_MATH_DEFINES
#include <math.h>
#include <algorithm>

#include "ray.h"


namespace mingfx {
    
const float GfxMath::PI = 3.14159265359f;
const float GfxMath::TWO_PI = 6.28318530718f;
const float GfxMath::HALF_PI = 1.57079632679f;

float GfxMath::sin(float a) {
#ifdef WIN32
    return std::sinf(a);
#else
    return std::sin(a);
#endif
}

float GfxMath::cos(float a) {
#ifdef WIN32
    return std::cosf(a);
#else
    return std::cos(a);
#endif
}

float GfxMath::tan(float a) {
#ifdef WIN32
    return std::tanf(a);
#else
    return std::tan(a);
#endif
}

float GfxMath::asin(float a) {
#ifdef WIN32
    return std::asinf(a);
#else
    return std::asin(a);
#endif
}

float GfxMath::acos(float a) {
#ifdef WIN32
    return std::acosf(a);
#else
    return std::acos(a);
#endif
}

float GfxMath::atan(float a) {
#ifdef WIN32
    return std::atanf(a);
#else
    return std::atan(a);
#endif
}

float GfxMath::atan2(float a, float b) {
#ifdef WIN32
    return std::atan2f(a, b);
#else
    return std::atan2(a, b);
#endif
}

float GfxMath::Clamp(float x, float a, float b) {
    return std::min(std::max(x, a), b);
}    

float GfxMath::ToRadians(float degrees) {
    return degrees * GfxMath::PI / 180.0f;
}

float GfxMath::ToDegrees(float radians) {
    return radians * 180.0f / GfxMath::PI;
}

Vector3 GfxMath::ToRadians(Vector3 degrees) {
    return Vector3(ToRadians(degrees[0]), ToRadians(degrees[1]), ToRadians(degrees[2]));
}

Vector3 GfxMath::ToDegrees(Vector3 radians) {
    return Vector3(ToDegrees(radians[0]), ToDegrees(radians[1]), ToDegrees(radians[2]));
}
    
float GfxMath::Lerp(float a, float b, float alpha) {
    return (1.0f-alpha)*a + alpha*b;
}
    
int GfxMath::iLerp(int a, int b, float alpha) {
    return (int)std::round((1.0f-alpha)*(float)a + alpha*(float)b);
}
    
Point3 GfxMath::ScreenToNearPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint) {
    Matrix4 filmPtToWorld = (P*V).Inverse();
    return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], -1.0);
}
    
    
Point3 GfxMath::ScreenToWorld(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float zValue) {
    Matrix4 filmPtToWorld = (P*V).Inverse();
    float zneg1topos1 = zValue*2.0f - 1.0f;
    return filmPtToWorld * Point3(ndcPoint[0], ndcPoint[1], zneg1topos1);
}

    
Point3 GfxMath::ScreenToDepthPlane(const Matrix4 &V, const Matrix4 &P, const Point2 &ndcPoint, float planeDepth) {
    Point3 pNear = ScreenToNearPlane(V, P, ndcPoint);
    
    Matrix4 camMat = V.Inverse();
    Point3 eye = camMat.ColumnToPoint3(3);
    Vector3 look = -camMat.ColumnToVector3(2);
    
    Ray r(eye, pNear - eye);
    
    Point3 p3D;
    float t;
    if (!r.IntersectPlane(eye + planeDepth*look, -look, &t, &p3D)) {
        std::cerr << "filmplane2D_to_plane3D() error -- no intersection found!" << std::endl;
    }
    return p3D;
}
    
    
} // end namespace