aboutsummaryrefslogtreecommitdiffstats
path: root/dev/a2-carsoccer/car_soccer.cc
blob: c4de304d7cbdb01d95531a3f35ae09673d81b834 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/** CSci-4611 Assignment 2:  Car Soccer
 */

#include "car_soccer.h"
#include "config.h"


// Remember in C++, the .h file list all the functions and member variables that are part of the class!
// Look there first to understand what is part of the CarSoccer class, then look below to see how each
// function is implemented.


CarSoccer::CarSoccer() : GraphicsApp(1024,768, "Car Soccer") {
    // If you are having trouble driving the car with the keybaord, you can set this to true to use
    // the mouse instead.  The mouse controls are based on the postion of the mouse cursor on the window.
    // There is a "dead zone" in the middle of the window, and if you move the mouse up/down or left/right
    // outside of that zone, it is like pushing the up/down and/or left/right keys on the keyboard
    use_mouse_ = false;
        
    // Define a search path for finding data files (images and shaders)
    searchPath_.push_back(".");
    searchPath_.push_back("./data");
    searchPath_.push_back(DATA_DIR_INSTALL);
    searchPath_.push_back(DATA_DIR_BUILD);
}

CarSoccer::~CarSoccer() {
}


void CarSoccer::OnMouseMove(const Point2& pos, const Vector2& delta)
{
    mouse_pos_ = PixelsToNormalizedDeviceCoords(pos);
}

void CarSoccer::OnSpecialKeyDown(int key, int scancode, int modifiers) {
    if (key == GLFW_KEY_SPACE) {
        // Here's where you could call some form of launch_ball();
        ball_.Reset();
    }
}

/// This is a little utility function that is helpful.  It treats the arrow keys like a joystick or D-pad on a game controller
/// and returns the direction you are pressing as a 2D vector, taking into account the fact that you might be holding
/// down more than one key at a time.
Vector2 CarSoccer::joystick_direction() {
    Vector2 dir;

    if (use_mouse_) {
        // threshold defines the size of the "dead zone" in the middle of the screen
        // if the mouse's x,y position falls outside of this, then it is like pushing
        // the corresponding key on the keyboard
        const float threshold = 0.2f;
        dir[0] = 0;
        if (mouse_pos_[0] < -threshold) {
            dir[0] = -1;
        }
        else if (mouse_pos_[0] > threshold) {
            dir[0] = 1;
        }
        dir[1] = 0;
        if (mouse_pos_[1] < -threshold) {
            dir[1] = -1;
        }
        else if (mouse_pos_[1] > threshold) {
            dir[1] = 1;
        }
    }
    else {
        // the default user interface is to use the arrow keys on the keyboard.
        // like a D-pad on a game controller, you can hold more than one key down at a time if you want.
        if (IsKeyDown(GLFW_KEY_LEFT))
            dir[0]--;
        if (IsKeyDown(GLFW_KEY_RIGHT))
            dir[0]++;
        if (IsKeyDown(GLFW_KEY_UP))
            dir[1]++;
        if (IsKeyDown(GLFW_KEY_DOWN))
            dir[1]--;
    }

    return dir;
}

// dt is for "Delta Time", the elapsed time in seconds since the last frame
void CarSoccer::UpdateSimulation(double dt) {
    Vector2 dpad_dir = joystick_direction();
    //std::cout << "D-Pad Direction: " << dpad_dir << std::endl;

    // Here's where you shound do your "simulation", updating the positions of the
    // car and ball based on the elapsed time and checking for collisions.  Filling
    // in this routine is the main part of the assignment.

    /* Ball Routines */
    // ball collision with car
    if ((ball_.position() - car_.position()).Length() <= ball_.radius() + car_.collision_radius()) {
        Vector3 normal = (ball_.position() - car_.position()).ToUnit();
        // collision displacement
        while ((car_.position() - ball_.position()).Length() < ball_.radius() + car_.collision_radius()) {
            ball_.set_position(ball_.position() + normal * 0.1);
        }
        // bounce backwards
        Vector3 carBounce = ball_.velocity() - car_.velocity();
        ball_.set_velocity(0.8 * (car_.velocity() + carBounce - 2 * (carBounce.Dot(normal) * normal)));
    }
    // ball collision with various things
    // there's probably a way to do this with less boilerplate but it works
    if (ball_.position().y() - ball_.radius() <= 0) {
        // ground
        ball_.set_position(Point3(ball_.position().x(), ball_.radius(), ball_.position().z()));
        ball_.set_velocity(0.8 * (ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(0, 1, 0)) * Vector3(0, 1, 0))));
    }
    if (ball_.position().y() - ball_.radius() >= 35) {
        // ceiling
        ball_.set_position(Point3(ball_.position().x(), 35-ball_.radius(), ball_.position().z()));
        ball_.set_velocity(0.8*(ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(0, -1, 0)) * Vector3(0, -1, 0))));
    }
    if (ball_.position().z() + ball_.radius() >= 50) {
        // home
        ball_.set_position(Point3(ball_.position().x(), ball_.position().y(),50 - ball_.radius()));
        ball_.set_velocity(0.8 * (ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(0, 0, -1)) * Vector3(0, 0, -1))));
    }
    if (ball_.position().z() + ball_.radius() <= -50) {
        // away
        ball_.set_position(Point3(ball_.position().x(), ball_.position().y(), ball_.radius() - 50));
        ball_.set_velocity(0.8 * (ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(0, 0, 1)) * Vector3(0, 0, 1))));
    }
    if (ball_.position().x() + ball_.radius() <= -40) {
        // left
        ball_.set_position(Point3(ball_.radius() - 40, ball_.position().y(), ball_.position().z()));
        ball_.set_velocity(0.8 * (ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(1, 0, 0)) * Vector3(1, 0, 0))));
    }
    if (ball_.position().x() + ball_.radius() >= 40) {
        // right
        ball_.set_position(Point3(40 - ball_.radius(), ball_.position().y(), ball_.position().z()));
        ball_.set_velocity(0.8 * (ball_.velocity() - 2 * (ball_.velocity().Dot(Vector3(-1, 0, 0)) * Vector3(-1, 0, 0))));
    }
    // ball gravity
    Vector3 gravity = 30 * Vector3(0, -1, 0);
    ball_.set_velocity(ball_.velocity() + gravity * dt);
    ball_.set_position(ball_.position() + dt * ball_.velocity());

    /* Car Routines */
    car_.set_speed(car_.speed() + 20.0f * dt);
    car_.set_forward(Vector3(dpad_dir[0], 0, -dpad_dir[1]));
    car_.set_position(car_.position() + car_.speed() * Vector3(dpad_dir[0], 0, -dpad_dir[1]) * dt);
    if (car_.position().z() + car_.collision_radius() >= 50) {
        // home
        car_.set_position(Point3(car_.position().x(), car_.position().y(), 50 - car_.collision_radius()));
    }
    if (car_.position().z() + car_.collision_radius() <= -50) {
        // away
        car_.set_position(Point3(car_.position().x(), car_.position().y(), car_.collision_radius() - 50));
    }
    if (car_.position().x() + car_.collision_radius() <= -40) {
        // left
        std::cout << "left collide" << std::endl;
        car_.set_position(Point3(car_.collision_radius() - 40, car_.position().y(), car_.position().z()));
    }
    if (car_.position().x() + car_.collision_radius() >= 40) {
        // right
        car_.set_position(Point3(40 - car_.collision_radius(), car_.position().y(), car_.position().z()));
    }

    /* Goal Routines */
    if (ball_.position().x() + ball_.radius() >= -20 && ball_.position().x() + ball_.radius() <= 20
        && ball_.position().y() - ball_.radius() >= 0 && ball_.position().y() - ball_.radius() <= 10
        && ball_.position().z() + ball_.radius() >= 50) {
        //Goal scenario: home
        ball_.Reset();
        car_.Reset();
    }
    if (ball_.position().x() + ball_.radius() >= -20 && ball_.position().x() + ball_.radius() <= 20
        && ball_.position().y() - ball_.radius() >= 0 && ball_.position().y() - ball_.radius() <= 10
        && ball_.position().z() + ball_.radius() <= -50) {
        //Goal scenario: away
        ball_.Reset();
        car_.Reset();
    }

}


void CarSoccer::InitOpenGL() {
    // Set up the camera in a good position to see the entire field
    projMatrix_ = Matrix4::Perspective(60, aspect_ratio(), 1, 1000);
    modelMatrix_ = Matrix4::LookAt(Point3(0,60,70), Point3(0,0,10), Vector3(0,1,0));
 
    // Set a background color for the screen (don't worry if you get a depricated warning on this line in OSX)
    glClearColor(0.8f, 0.8f, 0.8f, 1.0f);
    
    // Load some image files we'll use
    fieldTex_.InitFromFile(Platform::FindFile("pitch.png", searchPath_));
    crowdTex_.InitFromFile(Platform::FindFile("crowd.png", searchPath_));
}


void CarSoccer::DrawUsingOpenGL() {
    // Draw the crowd as a fullscreen background image
    quickShapes_.DrawFullscreenTexture(Color(1, 1, 1), crowdTex_);

    // Draw the car and the ball
    car_.Draw(quickShapes_, modelMatrix_, viewMatrix_, projMatrix_);
    ball_.Draw(quickShapes_, modelMatrix_, viewMatrix_, projMatrix_);

    // Draw the field with the field texture on it.
    Color col(16.0f / 255.0f, 46.0f / 255.0f, 9.0f / 255.0f);
    Matrix4 M = Matrix4::Translation(Vector3(0.0f, -0.201f, 0.0f)) * Matrix4::Scale(Vector3(50.0f, 1.0f, 60.0f));
    quickShapes_.DrawSquare(modelMatrix_ * M, viewMatrix_, projMatrix_, col);
    M = Matrix4::Translation(Vector3(0.0f, -0.2f, 0.0f)) * Matrix4::Scale(Vector3(40.0f, 1.0f, 50.0f));
    quickShapes_.DrawSquare(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(1, 1, 1), fieldTex_);

    // You should add drawing the goals and the boundary of the playing area
    // using quickShapes_.DrawLines()

    // Bounding box
    std::vector<Point3> line;
    line.push_back(Point3(1.0, 0.0, 1.0));   line.push_back(Point3(1.0, 35.0, 1.0));
    line.push_back(Point3(-1.0, 0.0, -1.0)); line.push_back(Point3(-1.0, 35.0, -1.0));
    line.push_back(Point3(-1.0, 0.0, 1.0));  line.push_back(Point3(-1.0, 35.0, 1.0));
    line.push_back(Point3(1.0, 0.0, -1.0));  line.push_back(Point3(1.0, 35.0, -1.0));
    line.push_back(Point3(-1.0, 35.0, 1.0)); line.push_back(Point3(1.0, 35.0, 1.0));
    line.push_back(Point3(1.0, 35.0, 1.0));  line.push_back(Point3(1.0, 35.0, -1.0));
    line.push_back(Point3(1.0, 35.0, -1.0)); line.push_back(Point3(-1.0, 35.0, -1.0));
    line.push_back(Point3(-1.0, 35.0, -1.0)); line.push_back(Point3(-1.0, 35.0, 1.0));
    quickShapes_.DrawLines(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(1, 1, 1, 0.1), line, QuickShapes::LinesType::LINES, 0.001);
    
    // Away Goal
    std::vector<Point3> awayBounds;
    awayBounds.push_back(Point3(20.0 / 80.0, 0.0, -1));
    awayBounds.push_back(Point3(20.0 / 80.0, 10.0, -1));
    awayBounds.push_back(Point3(-20.0 / 80.0, 10.0, -1));
    awayBounds.push_back(Point3(-20.0 / 80.0, 0.0, -1));
    quickShapes_.DrawLines(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(0, 0, 1), awayBounds, QuickShapes::LinesType::LINE_LOOP, .01);

    std::vector<Point3> awayGrid;
    for (int i = 0; i < 10; i++) {
        //Vertial grid
        awayGrid.push_back(Point3(-20.0 / 80.0 + i / 20.0, 0.0, -1));
        awayGrid.push_back(Point3(-20.0 / 80.0 + i / 20.0, 10.0, -1));
    }
    for (int j = 0; j < 10; j++) {
        //Horz grid
        awayGrid.push_back(Point3(-20.0 / 80.0, j, -1));
        awayGrid.push_back(Point3(20.0 / 80.0, j, -1));
    } quickShapes_.DrawLines(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(0, 0, 1, 0.2), awayGrid, QuickShapes::LinesType::LINES, .003);


    // Home Goal
    std::vector<Point3> homeBounds;
    homeBounds.push_back(Point3(20.0 / 80.0, 0.0, 1));
    homeBounds.push_back(Point3(20.0 / 80.0, 10.0, 1));
    homeBounds.push_back(Point3(-20.0 / 80.0, 10.0, 1));
    homeBounds.push_back(Point3(-20.0 / 80.0, 0.0, 1));
    quickShapes_.DrawLines(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(1, 0, 0), homeBounds, QuickShapes::LinesType::LINE_LOOP, .01);
    
    std::vector<Point3> homeGrid;
    for (int i = 0; i < 10; i++) {
        //Vertial grid
        homeGrid.push_back(Point3(-20.0 / 80.0 + i / 20.0, 0.0, 1));
        homeGrid.push_back(Point3(-20.0 / 80.0 + i / 20.0, 10.0, 1));
    }
    for (int j = 0; j < 10; j++) {
        //Horz grid
        homeGrid.push_back(Point3(-20.0 / 80.0, j, 1));
        homeGrid.push_back(Point3(20.0 / 80.0, j, 1));
    } quickShapes_.DrawLines(modelMatrix_ * M, viewMatrix_, projMatrix_, Color(1, 0, 0, 0.2), homeGrid, QuickShapes::LinesType::LINES, .003);

}