aboutsummaryrefslogtreecommitdiffstats
path: root/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
diff options
context:
space:
mode:
authorMatt Strapp <matt@mattstrapp.net>2021-09-14 15:52:40 -0500
committerMatt Strapp <matt@mattstrapp.net>2021-09-14 15:52:40 -0500
commit4859906d4064531239c59233ed59e94cc3b8c84a (patch)
treea2103b81ba5e925d8578551f3df45ad55d281895 /OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
parentChange resume email (diff)
downloadhomework-4859906d4064531239c59233ed59e94cc3b8c84a.tar
homework-4859906d4064531239c59233ed59e94cc3b8c84a.tar.gz
homework-4859906d4064531239c59233ed59e94cc3b8c84a.tar.bz2
homework-4859906d4064531239c59233ed59e94cc3b8c84a.tar.lz
homework-4859906d4064531239c59233ed59e94cc3b8c84a.tar.xz
homework-4859906d4064531239c59233ed59e94cc3b8c84a.tar.zst
homework-4859906d4064531239c59233ed59e94cc3b8c84a.zip
remove jupyter notebook from repo
Diffstat (limited to 'OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py')
-rw-r--r--OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py119
1 files changed, 0 insertions, 119 deletions
diff --git a/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py b/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
deleted file mode 100644
index ebd8ca1..0000000
--- a/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
+++ /dev/null
@@ -1,119 +0,0 @@
-import numpy as np
-
-def layer_sizes_test_case():
- np.random.seed(1)
- X_assess = np.random.randn(5, 3)
- Y_assess = np.random.randn(2, 3)
- return X_assess, Y_assess
-
-def initialize_parameters_test_case():
- n_x, n_h, n_y = 2, 4, 1
- return n_x, n_h, n_y
-
-
-def forward_propagation_test_case():
- np.random.seed(1)
- X_assess = np.random.randn(2, 3)
- b1 = np.random.randn(4,1)
- b2 = np.array([[ -1.3]])
-
- parameters = {'W1': np.array([[-0.00416758, -0.00056267],
- [-0.02136196, 0.01640271],
- [-0.01793436, -0.00841747],
- [ 0.00502881, -0.01245288]]),
- 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
- 'b1': b1,
- 'b2': b2}
-
- return X_assess, parameters
-
-def compute_cost_test_case():
- np.random.seed(1)
- Y_assess = (np.random.randn(1, 3) > 0)
- parameters = {'W1': np.array([[-0.00416758, -0.00056267],
- [-0.02136196, 0.01640271],
- [-0.01793436, -0.00841747],
- [ 0.00502881, -0.01245288]]),
- 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
- 'b1': np.array([[ 0.],
- [ 0.],
- [ 0.],
- [ 0.]]),
- 'b2': np.array([[ 0.]])}
-
- a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))
-
- return a2, Y_assess, parameters
-
-def backward_propagation_test_case():
- np.random.seed(1)
- X_assess = np.random.randn(2, 3)
- Y_assess = (np.random.randn(1, 3) > 0)
- parameters = {'W1': np.array([[-0.00416758, -0.00056267],
- [-0.02136196, 0.01640271],
- [-0.01793436, -0.00841747],
- [ 0.00502881, -0.01245288]]),
- 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
- 'b1': np.array([[ 0.],
- [ 0.],
- [ 0.],
- [ 0.]]),
- 'b2': np.array([[ 0.]])}
-
- cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],
- [-0.05225116, 0.02725659, -0.02646251],
- [-0.02009721, 0.0036869 , 0.02883756],
- [ 0.02152675, -0.01385234, 0.02599885]]),
- 'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),
- 'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],
- [-0.05229879, 0.02726335, -0.02646869],
- [-0.02009991, 0.00368692, 0.02884556],
- [ 0.02153007, -0.01385322, 0.02600471]]),
- 'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}
- return parameters, cache, X_assess, Y_assess
-
-def update_parameters_test_case():
- parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
- [-0.02311792, 0.03137121],
- [-0.0169217 , -0.01752545],
- [ 0.00935436, -0.05018221]]),
- 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
- 'b1': np.array([[ -8.97523455e-07],
- [ 8.15562092e-06],
- [ 6.04810633e-07],
- [ -2.54560700e-06]]),
- 'b2': np.array([[ 9.14954378e-05]])}
-
- grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
- [ 0.00082222, -0.00700776],
- [-0.00031831, 0.0028636 ],
- [-0.00092857, 0.00809933]]),
- 'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03,
- -2.55715317e-03]]),
- 'db1': np.array([[ 1.05570087e-07],
- [ -3.81814487e-06],
- [ -1.90155145e-07],
- [ 5.46467802e-07]]),
- 'db2': np.array([[ -1.08923140e-05]])}
- return parameters, grads
-
-def nn_model_test_case():
- np.random.seed(1)
- X_assess = np.random.randn(2, 3)
- Y_assess = (np.random.randn(1, 3) > 0)
- return X_assess, Y_assess
-
-def predict_test_case():
- np.random.seed(1)
- X_assess = np.random.randn(2, 3)
- parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
- [-0.02311792, 0.03137121],
- [-0.0169217 , -0.01752545],
- [ 0.00935436, -0.05018221]]),
- 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
- 'b1': np.array([[ -8.97523455e-07],
- [ 8.15562092e-06],
- [ 6.04810633e-07],
- [ -2.54560700e-06]]),
- 'b2': np.array([[ 9.14954378e-05]])}
- return parameters, X_assess