aboutsummaryrefslogtreecommitdiffstats
path: root/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
diff options
context:
space:
mode:
authorRossTheRoss <mstrapp@protonmail.com>2021-05-16 21:38:59 -0500
committerRossTheRoss <mstrapp@protonmail.com>2021-05-16 21:38:59 -0500
commit9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c (patch)
tree9e739b11361f5fd122b31cfce107947502b69809 /OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
parentAdd trash (diff)
downloadhomework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.gz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.bz2
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.lz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.xz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.zst
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.zip
Rearrange files
Diffstat (limited to 'OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py')
-rw-r--r--OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py119
1 files changed, 119 insertions, 0 deletions
diff --git a/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py b/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
new file mode 100644
index 0000000..ebd8ca1
--- /dev/null
+++ b/OLD/csci4511w/colab/HW5 - Neural Networks/test_cases.py
@@ -0,0 +1,119 @@
+import numpy as np
+
+def layer_sizes_test_case():
+ np.random.seed(1)
+ X_assess = np.random.randn(5, 3)
+ Y_assess = np.random.randn(2, 3)
+ return X_assess, Y_assess
+
+def initialize_parameters_test_case():
+ n_x, n_h, n_y = 2, 4, 1
+ return n_x, n_h, n_y
+
+
+def forward_propagation_test_case():
+ np.random.seed(1)
+ X_assess = np.random.randn(2, 3)
+ b1 = np.random.randn(4,1)
+ b2 = np.array([[ -1.3]])
+
+ parameters = {'W1': np.array([[-0.00416758, -0.00056267],
+ [-0.02136196, 0.01640271],
+ [-0.01793436, -0.00841747],
+ [ 0.00502881, -0.01245288]]),
+ 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
+ 'b1': b1,
+ 'b2': b2}
+
+ return X_assess, parameters
+
+def compute_cost_test_case():
+ np.random.seed(1)
+ Y_assess = (np.random.randn(1, 3) > 0)
+ parameters = {'W1': np.array([[-0.00416758, -0.00056267],
+ [-0.02136196, 0.01640271],
+ [-0.01793436, -0.00841747],
+ [ 0.00502881, -0.01245288]]),
+ 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
+ 'b1': np.array([[ 0.],
+ [ 0.],
+ [ 0.],
+ [ 0.]]),
+ 'b2': np.array([[ 0.]])}
+
+ a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))
+
+ return a2, Y_assess, parameters
+
+def backward_propagation_test_case():
+ np.random.seed(1)
+ X_assess = np.random.randn(2, 3)
+ Y_assess = (np.random.randn(1, 3) > 0)
+ parameters = {'W1': np.array([[-0.00416758, -0.00056267],
+ [-0.02136196, 0.01640271],
+ [-0.01793436, -0.00841747],
+ [ 0.00502881, -0.01245288]]),
+ 'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
+ 'b1': np.array([[ 0.],
+ [ 0.],
+ [ 0.],
+ [ 0.]]),
+ 'b2': np.array([[ 0.]])}
+
+ cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],
+ [-0.05225116, 0.02725659, -0.02646251],
+ [-0.02009721, 0.0036869 , 0.02883756],
+ [ 0.02152675, -0.01385234, 0.02599885]]),
+ 'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),
+ 'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],
+ [-0.05229879, 0.02726335, -0.02646869],
+ [-0.02009991, 0.00368692, 0.02884556],
+ [ 0.02153007, -0.01385322, 0.02600471]]),
+ 'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}
+ return parameters, cache, X_assess, Y_assess
+
+def update_parameters_test_case():
+ parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
+ [-0.02311792, 0.03137121],
+ [-0.0169217 , -0.01752545],
+ [ 0.00935436, -0.05018221]]),
+ 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
+ 'b1': np.array([[ -8.97523455e-07],
+ [ 8.15562092e-06],
+ [ 6.04810633e-07],
+ [ -2.54560700e-06]]),
+ 'b2': np.array([[ 9.14954378e-05]])}
+
+ grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
+ [ 0.00082222, -0.00700776],
+ [-0.00031831, 0.0028636 ],
+ [-0.00092857, 0.00809933]]),
+ 'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03,
+ -2.55715317e-03]]),
+ 'db1': np.array([[ 1.05570087e-07],
+ [ -3.81814487e-06],
+ [ -1.90155145e-07],
+ [ 5.46467802e-07]]),
+ 'db2': np.array([[ -1.08923140e-05]])}
+ return parameters, grads
+
+def nn_model_test_case():
+ np.random.seed(1)
+ X_assess = np.random.randn(2, 3)
+ Y_assess = (np.random.randn(1, 3) > 0)
+ return X_assess, Y_assess
+
+def predict_test_case():
+ np.random.seed(1)
+ X_assess = np.random.randn(2, 3)
+ parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
+ [-0.02311792, 0.03137121],
+ [-0.0169217 , -0.01752545],
+ [ 0.00935436, -0.05018221]]),
+ 'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
+ 'b1': np.array([[ -8.97523455e-07],
+ [ 8.15562092e-06],
+ [ 6.04810633e-07],
+ [ -2.54560700e-06]]),
+ 'b2': np.array([[ 9.14954378e-05]])}
+ return parameters, X_assess