diff options
author | RossTheRoss <mstrapp@protonmail.com> | 2021-05-16 21:38:59 -0500 |
---|---|---|
committer | RossTheRoss <mstrapp@protonmail.com> | 2021-05-16 21:38:59 -0500 |
commit | 9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c (patch) | |
tree | 9e739b11361f5fd122b31cfce107947502b69809 /csci4511w/colab/HW5 - Neural Networks/planar_utils.py | |
parent | Add trash (diff) | |
download | homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.gz homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.bz2 homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.lz homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.xz homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.zst homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.zip |
Rearrange files
Diffstat (limited to 'csci4511w/colab/HW5 - Neural Networks/planar_utils.py')
-rw-r--r-- | csci4511w/colab/HW5 - Neural Networks/planar_utils.py | 66 |
1 files changed, 0 insertions, 66 deletions
diff --git a/csci4511w/colab/HW5 - Neural Networks/planar_utils.py b/csci4511w/colab/HW5 - Neural Networks/planar_utils.py deleted file mode 100644 index 1b22c39..0000000 --- a/csci4511w/colab/HW5 - Neural Networks/planar_utils.py +++ /dev/null @@ -1,66 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np -import sklearn -import sklearn.datasets -import sklearn.linear_model - -def plot_decision_boundary(model, X, y): - # Set min and max values and give it some padding - x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 - y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 - h = 0.01 - # Generate a grid of points with distance h between them - xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) - # Predict the function value for the whole grid - Z = model(np.c_[xx.ravel(), yy.ravel()]) - Z = Z.reshape(xx.shape) - # Plot the contour and training examples - plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) - plt.ylabel('x2') - plt.xlabel('x1') - plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) - - -def sigmoid(x): - """ - Compute the sigmoid of x - - Arguments: - x -- A scalar or numpy array of any size. - - Return: - s -- sigmoid(x) - """ - s = 1/(1+np.exp(-x)) - return s - -def load_planar_dataset(): - np.random.seed(1) - m = 400 # number of examples - N = int(m/2) # number of points per class - D = 2 # dimensionality - X = np.zeros((m,D)) # data matrix where each row is a single example - Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) - a = 4 # maximum ray of the flower - - for j in range(2): - ix = range(N*j,N*(j+1)) - t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta - r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius - X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] - Y[ix] = j - - X = X.T - Y = Y.T - - return X, Y - -def load_extra_datasets(): - N = 200 - noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) - noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) - blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) - gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) - no_structure = np.random.rand(N, 2), np.random.rand(N, 2) - - return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure |