aboutsummaryrefslogtreecommitdiffstats
path: root/csci4511w/colab/HW5 - Neural Networks/planar_utils.py
diff options
context:
space:
mode:
authorRossTheRoss <mstrapp@protonmail.com>2021-05-16 21:38:59 -0500
committerRossTheRoss <mstrapp@protonmail.com>2021-05-16 21:38:59 -0500
commit9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c (patch)
tree9e739b11361f5fd122b31cfce107947502b69809 /csci4511w/colab/HW5 - Neural Networks/planar_utils.py
parentAdd trash (diff)
downloadhomework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.gz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.bz2
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.lz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.xz
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.tar.zst
homework-9148fa6e2fad9d54e3451a4478e03f55f0a9fa3c.zip
Rearrange files
Diffstat (limited to 'csci4511w/colab/HW5 - Neural Networks/planar_utils.py')
-rw-r--r--csci4511w/colab/HW5 - Neural Networks/planar_utils.py66
1 files changed, 0 insertions, 66 deletions
diff --git a/csci4511w/colab/HW5 - Neural Networks/planar_utils.py b/csci4511w/colab/HW5 - Neural Networks/planar_utils.py
deleted file mode 100644
index 1b22c39..0000000
--- a/csci4511w/colab/HW5 - Neural Networks/planar_utils.py
+++ /dev/null
@@ -1,66 +0,0 @@
-import matplotlib.pyplot as plt
-import numpy as np
-import sklearn
-import sklearn.datasets
-import sklearn.linear_model
-
-def plot_decision_boundary(model, X, y):
- # Set min and max values and give it some padding
- x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
- y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
- h = 0.01
- # Generate a grid of points with distance h between them
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
- # Predict the function value for the whole grid
- Z = model(np.c_[xx.ravel(), yy.ravel()])
- Z = Z.reshape(xx.shape)
- # Plot the contour and training examples
- plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
- plt.ylabel('x2')
- plt.xlabel('x1')
- plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
-
-
-def sigmoid(x):
- """
- Compute the sigmoid of x
-
- Arguments:
- x -- A scalar or numpy array of any size.
-
- Return:
- s -- sigmoid(x)
- """
- s = 1/(1+np.exp(-x))
- return s
-
-def load_planar_dataset():
- np.random.seed(1)
- m = 400 # number of examples
- N = int(m/2) # number of points per class
- D = 2 # dimensionality
- X = np.zeros((m,D)) # data matrix where each row is a single example
- Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
- a = 4 # maximum ray of the flower
-
- for j in range(2):
- ix = range(N*j,N*(j+1))
- t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
- r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
- X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
- Y[ix] = j
-
- X = X.T
- Y = Y.T
-
- return X, Y
-
-def load_extra_datasets():
- N = 200
- noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
- noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
- blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
- gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
- no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
-
- return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure