aboutsummaryrefslogtreecommitdiffstats
path: root/OLD/ee4363/mp2/mipspipe_mp2.v
diff options
context:
space:
mode:
Diffstat (limited to 'OLD/ee4363/mp2/mipspipe_mp2.v')
-rw-r--r--OLD/ee4363/mp2/mipspipe_mp2.v159
1 files changed, 0 insertions, 159 deletions
diff --git a/OLD/ee4363/mp2/mipspipe_mp2.v b/OLD/ee4363/mp2/mipspipe_mp2.v
deleted file mode 100644
index 9ea9fc2..0000000
--- a/OLD/ee4363/mp2/mipspipe_mp2.v
+++ /dev/null
@@ -1,159 +0,0 @@
-// Incomplete behavioral model of MIPS pipeline
-
-module mipspipe_mp2 (clock);
- // in_out
- input clock;
-
- // Instruction opcodes
- parameter LW = 6'b100011, SW = 6'b101011, BEQ = 6'b000100, nop = 32'b00000_100000, ALUop = 6'b0;
- reg [31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // instruction and data memories
- IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline latches
- EXMEMALUOut, MEMWBValue, MEMWBIR;
-
- wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt, IFIDrt, IFIDrs; // hold register fields
- wire [5:0] EXMEMop, MEMWBop, IDEXop, IFIDop; // hold opcodes
- wire [31:0] Ain, Bin; // ALU inputs
-
- // declare the bypass signals
- wire bypassAfromMEM, bypassAfromALUinWB, bypassBfromMEM, bypassBfromALUinWB, bypassAfromLWinWB, bypassBfromLWinWB, bypassIDEXAfromWB, bypassIDEXBfromWB, STALL;
-
- // Define fields of pipeline latches
- assign IDEXrs = IDEXIR[25:21]; // rs field
- assign IDEXrt = IDEXIR[20:16]; // rt field
- assign EXMEMrd = EXMEMIR[15:11]; // rd field
- assign MEMWBrd = MEMWBIR[15:11]; // rd field
- assign MEMWBrt = MEMWBIR[20:16]; // rt field -- for loads
- assign EXMEMop = EXMEMIR[31:26]; // opcode
- assign MEMWBop = MEMWBIR[31:26]; // opcode
- assign IDEXop = IDEXIR[31:26]; // opcode
- assign IFIDrs = IFIDIR[25:21];
- assign IFIDrt = IFIDIR[20:16];
- assign IFIDop = IFIDIR[31:26];
-
-
- // The bypass to input A from the MEM stage for an ALU operation
- assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop);
- // The bypass to input B from the MEM stage for an ALU operation
- assign bypassBfromMEM = 0;
- // The bypass to input A from the WB stage for an ALU operation
- assign bypassAfromALUinWB = 0;
- // The bypass to input B from the WB stage for an ALU operation
- assign bypassBfromALUinWB = 0;
- // The bypass to input A from the WB stage for an LW operation
- assign bypassAfromLWinWB = (IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
- // The bypass to input B from the WB stage for an LW operation
- assign bypassBfromLWinWB = 0;
- //Stall to bypass A or B if need b (I'm not sorry)
- assign bypassIDEXAfromWB = ((MEMWBIR != nop) & (IFIDIR != nop) & (IFIDrs == MEMWBrt) & (MEMWBop == LW)) |
- ((MEMWBop == ALUop) & (MEMWBrd == IFIDrs));
- assign bypassIDEXBfromWB = ((MEMWBIR != nop) & (IFIDIR != nop) & (IFIDrt == MEMWBrt) & (MEMWBop == LW)) |
- ((MEMWBop == ALUop) & (MEMWBrd == IFIDrt));
- // The A input to the ALU is bypassed from MEM if there is a bypass there,
- // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
- assign Ain = bypassAfromMEM? EXMEMALUOut : (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
-
- // The B input to the ALU is bypassed from MEM if there is a bypass there,
- // Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
- // Ripped off of above just replacing "A" with "B"
- assign Bin = bypassBfromMEM? EXMEMALUOut : (bypassBfromALUinWB | bypassBfromLWinWB)? MEMWBValue : IDEXB;
-
-
- reg [5:0] i; // used to initialize latches
- reg [10:0] j,k; // used to initialize memories
-
- // Make the Big Stall
- assign STALL = (IDEXop == LW) &&
- //All of this is anded with the above (Lisp would be proud)
- (((IFIDop == LW) && (IFIDrs == IDEXrt)) |
- ((IFIDop == ALUop) && ((IFIDrs == IDEXrt) | (IFIDrt == IDEXrt))) |
- ((IFIDop == SW) && ((IFIDrs == IDEXrt) | (IFIDrt == IDEXrt))));
-
- initial begin
- PC = 0;
- IFIDIR = nop;
- IDEXIR = nop;
- EXMEMIR = nop;
- MEMWBIR = nop; // no-ops in pipeline latches
-
- for (i = 0;i<=31;i = i+1) Regs[i] = i; // initialize latches
-
- IMemory[0] = 32'h00412820; // ADD $5, $2, $1
- IMemory[1] = 32'h8ca30004; // LW $3, 4($5)
- IMemory[2] = 32'haca70005; // SW $7, 5($5)
- // Hazard 1: ADD might not have written to $5 before SW reads from $5 (Type 2: Read after Write)
- IMemory[3] = 32'h00602020; // ADD $4, $3, $0
- // Hazard 2: ADD might read $3 before LW writes to $3 (Type 3: Write after read)
- IMemory[4] = 32'h01093020; // ADD $6, $8, $9
- IMemory[5] = 32'hac06000c; // SW $6, $12($0)
- // Hazard 3: ADD and SW are trying to access the same register (Type 1: Write after Write)
- IMemory[6] = 32'h00c05020; // ADD $10, $6, $0
- // Hazard 4: ADD reads from $6 and is written to (twice) immediately beforehand (Type 2: Read after Write)
- IMemory[7] = 32'h8c0b0010; // LW $11, 32($0)
- IMemory[8] = 32'h00000020; // ADD $0, $0, $0
- IMemory[9] = 32'h002b6020; // ADD $12, $1, $11
- // Hazard 5: LW might not have written to $11 before the last ADD reads from $11 (Type 2: Read after Write)
- for (j=10; j<=1023; j=j+1) IMemory[j] = nop;
-
- DMemory[0] = 32'h00000000;
- DMemory[1] = 32'hffffffff;
- DMemory[2] = 32'h00000000;
- DMemory[3] = 32'h00000000;
- DMemory[4] = 32'hfffffffe;
- for (k=5; k<=1023; k=k+1) DMemory[k] = 0;
- end
-
- always @ (posedge clock) begin
- if (~STALL) begin
- // FETCH: Fetch instruction & update PC
- IFIDIR <= IMemory[PC>>2];
- PC <= PC + 4;
-
- // DECODE: Read registers
- if (~bypassIDEXAfromWB) begin
- IDEXA <= Regs[IFIDIR[25:21]];
- end
- else begin
- IDEXA <= MEMWBValue;
- end
-
- if (~bypassIDEXBfromWB) begin
- IDEXB <= Regs[IFIDIR[20:16]];
- end
- else begin
- IDEXB <= MEMWBValue;
- end
- IDEXIR <= IFIDIR;
- end
- else begin //IF (STALL)
- IDEXIR <= nop;
- end
-
- // EX: Address calculation or ALU operation
- if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
- EXMEMALUOut <= Ain +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
- else if (IDEXop==ALUop) begin
- case (IDEXIR[5:0]) // R-type instruction
- 32: EXMEMALUOut <= Ain + Bin; // add operation
- default: ; // other R-type operations: subtract, SLT, etc.
- endcase
- end
-
- EXMEMIR <= IDEXIR;
- EXMEMB <= Bin; // pass along the IR & B register
-
- // MEM
- if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU result
- else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
- else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; // store
-
- MEMWBIR <= EXMEMIR; // pass along IR
-
- // WB
- if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update latches if ALU operation and destination not 0
- Regs[MEMWBrd] <= MEMWBValue; // ALU operation
- else if ((MEMWBop == LW)& (MEMWBrt != 0)) // Update latches if load and destination not 0
- Regs[MEMWBrt] <= MEMWBValue;
- end
-
-endmodule
-