1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
// Incomplete behavioral model of MIPS pipeline
module mipspipe_mp2 (clock);
// in_out
input clock;
// Instruction opcodes
parameter LW = 6'b100011, SW = 6'b101011, BEQ = 6'b000100, nop = 32'b00000_100000, ALUop = 6'b0;
reg [31:0] PC, Regs[0:31], IMemory[0:1023], DMemory[0:1023], // instruction and data memories
IFIDIR, IDEXA, IDEXB, IDEXIR, EXMEMIR, EXMEMB, // pipeline latches
EXMEMALUOut, MEMWBValue, MEMWBIR;
wire [4:0] IDEXrs, IDEXrt, EXMEMrd, MEMWBrd, MEMWBrt; // hold register fields
wire [5:0] EXMEMop, MEMWBop, IDEXop; // hold opcodes
wire [31:0] Ain, Bin; // ALU inputs
// declare the bypass signals
wire bypassAfromMEM, bypassAfromALUinWB, bypassBfromMEM, bypassBfromALUinWB, bypassAfromLWinWB, bypassBfromLWinWB;
// Define fields of pipeline latches
assign IDEXrs = IDEXIR[25:21]; // rs field
assign IDEXrt = IDEXIR[20:16]; // rt field
assign EXMEMrd = EXMEMIR[15:11]; // rd field
assign MEMWBrd = MEMWBIR[15:11]; // rd field
assign MEMWBrt = MEMWBIR[20:16]; // rt field -- for loads
assign EXMEMop = EXMEMIR[31:26]; // opcode
assign MEMWBop = MEMWBIR[31:26]; // opcode
assign IDEXop = IDEXIR[31:26]; // opcode
// The bypass to input A from the MEM stage for an ALU operation
assign bypassAfromMEM = (IDEXrs == EXMEMrd) & (IDEXrs!=0) & (EXMEMop==ALUop);
// The bypass to input B from the MEM stage for an ALU operation
assign bypassBfromMEM = 0;
// The bypass to input A from the WB stage for an ALU operation
assign bypassAfromALUinWB = 0;
// The bypass to input B from the WB stage for an ALU operation
assign bypassBfromALUinWB = 0;
// The bypass to input A from the WB stage for an LW operation
assign bypassAfromLWinWB = (IDEXrs == MEMWBIR[20:16]) & (IDEXrs!=0) & (MEMWBop==LW);
// The bypass to input B from the WB stage for an LW operation
assign bypassBfromLWinWB = 0;
// The A input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Ain = bypassAfromMEM? EXMEMALUOut : (bypassAfromALUinWB | bypassAfromLWinWB)? MEMWBValue : IDEXA;
// The B input to the ALU is bypassed from MEM if there is a bypass there,
// Otherwise from WB if there is a bypass there, and otherwise comes from the IDEX register
assign Bin = IDEXB;
reg [5:0] i; // used to initialize latches
reg [10:0] j,k; // used to initialize memories
initial begin
PC = 0;
IFIDIR = nop;
IDEXIR = nop;
EXMEMIR = nop;
MEMWBIR = nop; // no-ops in pipeline latches
for (i = 0;i<=31;i = i+1) Regs[i] = i; // initialize latches
IMemory[0] = 32'h00412820;
IMemory[1] = 32'h8ca30004;
IMemory[2] = 32'haca70005;
IMemory[3] = 32'h00602020;
IMemory[4] = 32'h01093020;
IMemory[5] = 32'hac06000c;
IMemory[6] = 32'h00c05020;
IMemory[7] = 32'h8c0b0010;
IMemory[8] = 32'h00000020;
IMemory[9] = 32'h002b6020;
for (j=10; j<=1023; j=j+1) IMemory[j] = nop;
DMemory[0] = 32'h00000000;
DMemory[1] = 32'hffffffff;
DMemory[2] = 32'h00000000;
DMemory[3] = 32'h00000000;
DMemory[4] = 32'hfffffffe;
for (k=5; k<=1023; k=k+1) DMemory[k] = 0;
end
always @ (posedge clock)
begin
// FETCH: Fetch instruction & update PC
IFIDIR <= IMemory[PC>>2];
PC <= PC + 4;
// DECODE: Read registers
IDEXA <= Regs[IFIDIR[25:21]];
IDEXB <= Regs[IFIDIR[20:16]];
IDEXIR <= IFIDIR;
// EX: Address calculation or ALU operation
if ((IDEXop==LW) |(IDEXop==SW)) // address calculation & copy B
EXMEMALUOut <= Ain +{{16{IDEXIR[15]}}, IDEXIR[15:0]};
else if (IDEXop==ALUop) begin
case (IDEXIR[5:0]) // R-type instruction
32: EXMEMALUOut <= Ain + Bin; // add operation
default: ; // other R-type operations: subtract, SLT, etc.
endcase
end
EXMEMIR <= IDEXIR;
EXMEMB <= Bin; // pass along the IR & B register
// MEM
if (EXMEMop==ALUop) MEMWBValue <= EXMEMALUOut; // pass along ALU result
else if (EXMEMop == LW) MEMWBValue <= DMemory[EXMEMALUOut>>2];
else if (EXMEMop == SW) DMemory[EXMEMALUOut>>2] <=EXMEMB; // store
MEMWBIR <= EXMEMIR; // pass along IR
// WB
if ((MEMWBop==ALUop) & (MEMWBrd != 0)) // update latches if ALU operation and destination not 0
Regs[MEMWBrd] <= MEMWBValue; // ALU operation
else if ((MEMWBop == LW)& (MEMWBrt != 0)) // Update latches if load and destination not 0
Regs[MEMWBrt] <= MEMWBValue;
end
endmodule
|